
Parameterized Leaf Shape Generation

Cem Kalyoncu

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science
in

Computer Engineering

Cyprus International University
November 2009

Lefkoşa, North Cyprus



                 

Approval of the Institute of Science

  

________________________________
Asst. Prof. Mehmedali Egemen

Director (acting)

I certify that this thesis satisfies the requirements as a thesis for the degree of Master 
of Science in Computer Engineering.

  

Assoc. Prof. Dr. Hasan Demirel
Chair, Department of  Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in 
scope  and  quality  as  a  thesis  for  the  degree  of  Master  of  Science  in  Computer 
Engineering.

                                

________________________________
Asst. Prof. Dr. Erbuğ Çelebi

Supervisor
         

Examining Committee
__________________________________________________________________

1.  Assoc. Prof. Dr. Hasan Demirel ______________________________

2.  Asst. Prof. Dr. Erbuğ Çelebi ______________________________

3.  Asst. Prof. Dr. Devrim Seral ______________________________

ii



ABSTRACT

Leaves are an important part of plants in nature. In this study, we have 

introduced  a  method  and  parameters  to  build  an  artificial  leaf.  Our 

proposed  model  consists  of  simple  and  intuitive  parameters  that  can 

easily  be  understood  by  a  graphic  designer.  The  model  is  based  on 

positional information system where graphical methods are used. We also 

implemented the model with an application that allows the end users to 

design, save and build leaves for their graphic design projects. Although 

there are other studies working on plant generation, our study is the only 

one that defines a leaf completely which can produce usable results. The 

resultant leaf images can either be used as texture in plant generation tool 

or as a clip-art in graphic design projects. We have also demonstrated the 

use of generated leaves in various works.

iii



Table of Contents

Chapter 1 – Introduction............................................................................................1

1.1. Problem Definition............................................................................................1

1.2. Goals.................................................................................................................3

1.3. Previous Works..................................................................................................3

1.4. TechnologiesStandards Used.............................................................................6
1.4.1. XML....................................................................................................................................6
1.4.2. Vector Graphics and SVG...................................................................................................7
1.4.3. OpenGL ..............................................................................................................................9
1.4.4. PNG...................................................................................................................................10

1.5. List of Symbols and Abbreviations.................................................................11

Chapter 2 – Leaf Anatomy and Morphology.........................................................13

2.1. Terminology....................................................................................................13

2.2. Leaf Shapes.....................................................................................................14

2.3. Leaflet Arrangements......................................................................................15

2.4. Venation Patterns.............................................................................................17

2.5. Margin Types...................................................................................................17

Chapter 3 – Leaf Modeling......................................................................................19

3.1. Hierarchy.........................................................................................................21

3.2. Shape parameters............................................................................................22

3.3. Margin Parameters..........................................................................................27

3.4. Placement Parameters.....................................................................................28

3.5. Randomization................................................................................................30

Chapter 4 – Bézier Class and Operations...............................................................33

4.1. Introduction.....................................................................................................33

4.2. Bézier Curves..................................................................................................33
4.2.1. Bézier Curves in Vector Graphics.....................................................................................33
4.2.2. Cubic Bézier Curve...........................................................................................................34
4.2.3. Bézier Curves of Higher Degrees.....................................................................................35

4.3. ApplicationUsage............................................................................................36
4.3.1. Terminology......................................................................................................................36
4.3.2. Bezier Class Properties.....................................................................................................37

iv



4.3.3. Translate, Scale, Rotate and Mirror..................................................................................38
4.3.4. Combine............................................................................................................................38
4.3.5. Finding Y Value at Given X..............................................................................................39
4.3.6. Finding Segment and Period at Given Place.....................................................................39
4.3.7. Determine Slope/Angle.....................................................................................................40
4.3.8. Offset.................................................................................................................................40
4.3.9. Duplicate...........................................................................................................................43
4.3.10. Randomize......................................................................................................................44
4.3.11. Segment Division............................................................................................................44
4.3.12. Reducing Y Difference....................................................................................................45
4.3.13. Save XML.......................................................................................................................45
4.3.14. Load XML......................................................................................................................45
4.3.15. Draw................................................................................................................................46

Chapter 5 – Implementation....................................................................................48

5.1. Introduction.....................................................................................................48

5.2. Gorgon Game Engine (GGE)..........................................................................48

5.3. Gorgon Widgets...............................................................................................52

5.4. Leaf Data and Representation.........................................................................53

5.5. Generating a Leaf............................................................................................54
5.5.1. Build Function...................................................................................................................54
5.5.2. BuildSubleaves..................................................................................................................57

5.6. Rendering Leaf................................................................................................60

5.7. User Interface..................................................................................................61
5.7.1. Main Interface...................................................................................................................62
5.7.2. Leaf Parameters.................................................................................................................63
5.7.3. Bézier Control and Editor.................................................................................................63

5.8. Save/Load and Export.....................................................................................65
5.8.1. XML Format.....................................................................................................................66
5.8.2. Save...................................................................................................................................67
5.8.3. Load..................................................................................................................................67
5.8.4. SVG Export.......................................................................................................................68

Chapter 6 – Conclusion and Results.......................................................................70

6.1. Conclusion.......................................................................................................70

6.2. AdvantagesBenefit..........................................................................................70

6.3. Results and Discussions..................................................................................71

6.4. Future Works...................................................................................................78

References..................................................................................................................80

Appendix A. XML Schema.......................................................................................82

v



Appendix B. Sample SVG Document......................................................................84

vi



Chapter 1 – Introduction

In this study, we have studied  on leaf generation and representation problems of 

computer  graphics..  In  this  chapter,  we  have  defined  the  problem,  our  solution 

approach,  previous research on the subject and technologies we have adopted to 

reach proposed objectives.

1.1. Problem Definition

Nowadays  computer generated scenes are used to  achieve artificial realism. 

Human made objects are created with incredible accuracy. However, creating nature 

scenes are still a challenge; this is caused by the complexity and variability of nature. 

This issue can also be seen in organic objects like trees and plants. Manually creating 

a  plant  or a tree takes  too much time. Therefore,  tools to generate these organic 

objects  are introduced. Solutions are proposed by both academic and commercial 

researchers. The existing research focuses into constructing  trees or plants, specially 

3D structures  which  are  considered  more  than  2D silhouettes  or  textures  of  the 

objects.  Most  importantly,  leaf  or  bark  textures  of  trees  or  plants  are  left  to  the 

designer to be found and placed. While its relatively easy to take a photo of  a tree 

bark and unfold it using simple graphic editors, photographing a leaf is harder; most 

leaves are curved leading to  non linear  perspective and lighting imperfections.  It 

requires specially crafted studio to achieve good results. Moreover, a camera with 

macro functionality is required. Even with these equipments, it requires access to the 

desired plant. After the photo of the leaf is taken, its background should be removed 

too. Moreover, in the light of todays hardware improvements, bump or displacement 

- 1 -



maps are used in 3D projects. However,  obtaining these maps requires expensive 

equipments  to  extract  displacement  maps  of  real  life  objects.  Leaves  have  slight 

difference in height, therefore it requires high quality hardware to capture these maps 

accurately.  However,  slight  height  variance  creates  huge  difference  in  lighting, 

therefore, it cannot be omitted. These difficulties lead to scenes having repeatedly 

same leaf, reducing the believability and quality of the generated scene.

Shape of a leaf gives feelings of nature, growth and forest. In graphic design, 

specifically in printed media, leaf silhouettes are used extensively to translate these 

positive feelings. Although many leaf silhouettes and “clip arts” are available, it is 

hard to find a matching clip art for a specific design. Moreover, most of the better  

quality clip arts are not available freely. This leads to designers creating leaves that 

they require by themselves. This task is long and daunting.

The problems that are related 

with  computer  graphics  can  be 

solved with a tool that allows us 

to  create  leaf  textures  or shapes. 

For  such  a  tool  one  must 

formalize the visual aspects of a leaf and parameterize them. This parameterizing 

process  allows  to  design  a  leaf  once  to  create  any  number  of  similar  leaves. 

Moreover, defined leaf can act as a blueprint of that leaf type and these blueprints 

can  become a  library.  After  parameters  are  defined,  a  tool  can  be  created  and a 

graphic designer who is equipped with it can create the texture, silhouette, or bump 

- 2 -

Figure 1.1: L-System Trees



map of any leaf that he requires with no lighting or perspective imperfections and 

without the need of actual plant.

1.2. Goals

We have two primary goals in this study. First, is to examine various leaves and 

build a formalized list of parameters that can define a leaf. These parameters should 

be sufficient to create a leaf shape without the need of any external help and their 

numbers should be small to reduce complexity.

Second aim of this study is to create an easy to use application that implements 

this  model which can solve the problem of creating leaves. The application itself 

should address as many problems as possible.  Our application should allow both 

bitmap and vector versions of a designed leaf, while supporting to save and load leaf 

structures for later use. This tool should also be capable of creating different leaves 

from the same set of parameters allowing variance that can easily be observed within 

the  nature.  Moreover,  to  target  larger  audience,  the  application  should  be  easily 

understood and should not require any specific skill.

1.3. Previous Works

The  generation/simulation  of  organic  structures  is  an  interesting  subject  of 

computer graphics. Many algorithms and methods are developed for this field ([1], 

[2], [3], [4]). These algorithms and methods can be divided into two categories. The 

first method is to follow the nature closely to achieve biologically realistic results. 

The simulation approach helps us to understand the nature better. The other method 

of creating an image of an organic structure is to generate only visible elements. 

- 3 -



Many researchers have worked on this subject of tree and plant creation using both 

methods. However, the effort on creating leaf textures and shapes are limited [5].

In an attempt to create a method to simulate leaf venation pattern, thus creating a 

leaf texture, a group of researchers used biological methods [6]. In that research, it is 

shown that the leaf venation pattern is  closely related to shape of the leaf blade. 

Therefore,  with  the  input  of  the  leaf  shape,  growth  parameters,  and  venation 

parameters user can have a biologically identical leaf pattern. This research helps us 

to  understand  growth  pattern  of  leaf  veins.  However,  their  approach  has  serious 

drawbacks.  First  of  all,  the  requested  parameters  are  difficult  to  understand; 

therefore,  a  user  without  prior  knowledge  on  the  subject  cannot  use  the  system 

effectively. Since the parameters are numerical, it is hard to create the desired leaf 

pattern.  Moreover,  system requires  an existing  leaf  blade  shape  and attractors  to 

grow. Finally, the result is black and white; therefore, it must be colored manually.

Another method of generating organic structures is to use fractals. Since plants 

tend to repeat themselves, using fractal methods for plant and leaf growth can be 

used. Best example of this method is presented by L-System fractals  [4]. Using L-

System Fractals many researches tried to create trees and plants.  Figure 1.1 shows 

trees that are generated with this method. Oppenheimer, also shown that leaves can 

be generated using fractals. However, only a number of leaves can be modeled this 

way.  However,  not every plant has leaves possessing self similarity.

A plant modeling system using positional information was proposed by [1]. In 

this  system, user is  asked to supply simple and graphical  (curves to define plant 

organs, placements, etc...) parameters to create the desired plant shape. This research 

- 4 -



has proven that positional information can be used in organic modeling to reduce the 

required  knowledge  level  to  use  the  system.  Moreover,  with  this  method,  it  is 

possible to create visually appealing plant models with less computational power. 

Their research is quite similar to our study, however their field is plant models and 

not leaves.

[7] has proposed a method of creating 3-D geometry for leaves. Their system 

divides a leaf into polygons to allow deformations to be made. Therefore, using this 

system, 2-D leaf textures, such as the ones generated by our project, can be deformed 

and rendered in 3-D scenes.

[8] shows an algorithm to combine edges of a leaf blade. Without using this 

algorithm, compound leaf blades cross each other and create artificial looking sharp 

edges. This algorithm combines these blades smoothly; therefore, it helps to create 

better looking compound leaves. However, after our research, we have found that 

ordinary Bézier union and smoothing works for leaves. Using a well known method 

instead of complex methods should be valued. However, Bézier operations can be 

performed if output of the system is Bézier paths, instead of a bitmap image.

[5] proposed a method to reconstruct leaves using a scanned image along with a 

user input. However, the proposed method only covers external shape of the leaf and 

focuses on constructing mesh structure rather than image of it.

XFrog [9] is a commercial application which is well-known and widely used for 

plant  modeling.  This  application  possesses  the  traits  of  positional  information 

system.  Although this  system is  powerful  and widely used,  it  has  no  support  to 

- 5 -



generate leaves shapes or images. On the other hand, this application requires readily 

available leaf textures to be effective.

1.4. Standards Used

1.4.1. XML

In this study, we are required to choose a method to represent leaf data. Our 

study aims to create an application that can be used along with other applications. 

Therefore, we have chosen XML to save files for the reasons explained below.

Extensible  Markup  Language  (XML)  is  a  human-readable,  machine-

understandable, general syntax for describing hierarchical data, applicable to a wide 

range of applications such as databases, e-commerce, web development, searching. 

XML is a very flexible text format that contains structured information, that have 

some structures, that contain contents like words, pictures and have some indication 

of what role that content plays.

XML is  a  meta-language  for  describing  markup  languages,  mechanism  to 

identify  structures  in  a  document,  that  are  defined  as  a  standard  by  the  XML 

specification.  XML provides  a  facility  to  define  tags,  that  enable  the  definition, 

transmission, validation, and interpretation of data between applications and between 

organizations, and the structural relationships between semantics and a tag set. All of 

the semantics of an XML document will either be defined by the applications that 

process them or by style sheets.

- 6 -



XML has  an  extensibility  that  allows  you  to  define  and  share  your  own 

markup that may have meaningful names for all your information items. XML is also 

heavily used for enclosing or encapsulating information in order to pass it between 

different computing systems that can be either internal or external such as vendors, 

customers, partners. By its system interoperability, knowledge transfer can be easier 

between different computing teams.

1.4.2. Vector Graphics and SVG

Our application  is  required to  create  usable output.  We have decided to  use 

vector  output  for  quality.  To  make  the  output  scalable  and  usable  in  many 

applications while being standard compliant, we have used SVG (Scalable Vector 

Graphics).

Vector  graphics  is  employed  for  the  creation  of  digital  images  through  a 

sequence of commands or mathematical statements that place geometrical primitives 

such as points, lines, curves, and shapes or polygons in a given 2D or 3D space. They 

are made up of any individual objects and they have individual properties assigned to 

them such  as  color,  fill,  and  outline.  Vector  graphics  are  resolution  independent 

because they can be output to the highest quality at any scale. Vector-oriented images 

can be resized,  stretched, and rotated without  loosing quality.  They are stored as 

vectors  which  look  better  on  devices  such  as  monitors  and  printers  with  higher 

resolution and often require less disk space. Moreover, it is easy to modify vector 

images. However, it is not possible, at least not logical, to represent every image as a 

vector graphic. Sometimes textures are used to achieve more realism. On graphics 

design  vector-oriented  images  have  more  advantages  than  bitmaps  because  of 

- 7 -



realizability and being easy to  edit.  Commonly used design applications that  use 

vector images includes Inkscape (SVG), Corel Draw (CDR), Adobe Illustrator (AI), 

Freehand (FH), and Adobe Flash (SWF, FLA). [10]

SVG  is  a  language  for  describing  two-dimensional  graphics  and  graphical 

applications in XML. Because SVG is text-based, it is easy to create. A sample SVG 

document  is  displayed  in  Appendix  B.  Key  features  include  shapes,  text  and 

embedded  raster  graphics,  with  many  different  painting  styles. SVG  has  been 

developed as  a  standard  format  by the  World  Wide Web Consortium (W3C) for 

displaying vector graphics on the Web. SVG enables Web documents to be smaller, 

faster  and  more  interactive.  Being  a  vector  format,  it  does  not  suffer  resolution 

problems.

SVG  is  well-supported  in  the  majority  of  modern  browser,  with  active 

development and rapid improvement in both interoperability and performance. SVG 

images can be scaled up or down to fit proportionally into any size display because 

of resolution and device independently. SVG images can be rendered with different 

CSS  styles  for  each  environment.  They  work  well  across  a  range  of  available 

bandwidths.  SVG makes it  possible  for  designers  to  escape the  constant  need to 

update graphics by hand or use custom code to generate bitmap images.

SVG is used in many business areas including Web graphics, animation, user 

interfaces, GIS (Geographic Information Systems) and mapping, embedded systems, 

graphics  interchange,  print  and  hard-copy  output,  mobile  applications  and  high-

quality design. [11]

- 8 -



1.4.3. OpenGL 

Open Graphics Library (OpenGL) is an application programming interface that 

is  used to  define 2D and 3D computer  scenes.  It  is  a  cross-platform API that  is 

generally considered to set the standard in the computer industry when it comes to 

this type of interaction with 2D computer graphics and has also become the usual 

tool for use with 3D graphics as well. Moreover, OpenGL is available for almost all 

programming languages.

OpenGL is a collection of several hundred functions providing access to all the 

features offered by graphics hardware. The graphics hardware may comprise varying 

degrees of graphics acceleration, from a raster subsystem capable of rendering two-

dimensional lines and polygons to sophisticated floating-point processors capable of 

transforming and computing on geometric data.  Internally, it acts as a state machine 

that is a collection of states that tell OpenGL what to do. Using the API, you can set  

various  aspects  of  the  state  machine,  including  such things  as  the  current  color, 

lighting, blending, and so on. When rendering, everything drawn is affected by the 

current settings of the state machine. OpenGL possess the following features.

• 2D image scaling

• Rendering 3D objects including spheres, cylinders, and disks

• Texture mapping and automatic mipmap generation from a single image

• Support for curves surfaces through NURBS

• Support for tessellation of non-convex polygons

• Special-purpose transformations and matrices

• Illumination, blending and transformations

- 9 -



The OpenGL draws primitives subject to a number of selectable modes. Each 

primitive is a point, line segment, polygon, or pixel rectangle. Primitives are defined 

by a group of one or more vertices. A vertex defines a point, an end point of an 

edge,or a corner of a polygon where two edges meet. Data, consisting of positional 

coordinates, colors, normals, and texture coordinates, are associated with a vertex 

and each vertex is processed independently, in order, and in the same way. 

The OpenGL provides direct control over the fundamental operations of 3D and 

2D  graphics.  This  includes  specification  of  such  parameters  as  transformation 

matrices,  lighting  equation  coefficients,  anti-aliasing  methods,  and  pixel  update 

operators.  [12], [13].

1.4.4. PNG

Vector graphics have its  strengths,  however,  in some projects raster (bitmap) 

images  are  preferred.  In  addition,  since  widget  engine  does  not  support  vector 

images, our user interface should contain bitmap images. Because of its advantages, 

we have chosen Portable Network Graphics (PNG) image format in our project.

PNG  is a bitmapped image format that employs lossless data compression. PNG 

was created in response to the GIF licensing debacle and is optimized for graphics 

use on the Internet and other on-line services. PNG supports image depths up to 24-

bit and provides a better lossless compression than that found in GIF files. Moreover, 

PNG has alpha channel and losses compression which is not supported by JPG.

PNG  has  three  main  advantages  over  GIF;  alpha  channels,  variable 

transparency,  gamma  correction  and  control  of  image  brightness.  PNG  also 

- 10 -



compresses better than GIF in almost every case. PNG provides a useful format for 

the storage of intermediate stages of editing. Since compression method used is fully 

lossless and supports up to 48-bit true color or 16-bit gray scale saving, restoring and 

re-saving an image will  not degrade its  quality,  unlike standard JPEG. The PNG 

specification  leaves  no  room for  implementors  to  pick  and choose  what  features 

they'll support; the result is that a PNG image saved in one application is readable in 

any other PNG-supporting application. [14]

1.5. List of Symbols and Abbreviations

In this section, we added the list of abbreviations used in this document.

• API: Application Programming Interface

• GGE: Gorgon Game Engine

• GIF: Graphics Interchange Format

• GIMP:  GNU Image Manipulation Program

• GRE: Gorgon Resource Engine

• JPEG: Joint Photographic Experts Group 

• LZMA: Lempel-Ziv-Markov Chain Algorithm

• NURBS: Non-Uniform Sational B-Spline

• OpenGL: Open Graphics Library

• PNG: Portable Network Graphics

• SCC: Cascading Style Sheets

• SVG: Scalable Vector Graphics

• UML: Unified Modeling Language

• XML: Extensible Markup Language

• XSD: Extensible Markup Language Schema

• OpenAL: Open Audio Library

- 11 -



Chapter 2 – Leaf Anatomy and Morphology

To generate a leaf shape and texture we have analyzed leaves in the nature.  This 

chapter defines leaf anatomy and morphology. This chapter is the key to understand 

rest of this document.

2.1. Terminology

This section describes the terminology used in leaf anatomy and morphology. 

We have also mentioned terminology used in our study. In Figure 2.1, leaf organs are 

illustrated.

Figure 2.1: Leaf organs

• Midrib: is the first vein level, its directly connected to the stem

• Secondary veins: veins that are growing from the midrib

• Lateral vein: veins that are growing from the both sides of midrib

• Blade (Lamina): leaf surface

• Tip: either the top section of the blade or the last sub leaves that grows from 

the tip of the midrib

- 12 -



• Margin: The edge of a leaf

• Lobe: A rounded or pointed section of a leaf

• Sinus:  The area between the lobes of a leaf

• Leaflet: is a part of a compound leaf that resembles a smaller leaf.

• Leaf level: definition of a vein branch or sub leaves of a main leaf where they 

are created and adjusted by the user

• Leaf, sub leaf: created by the system by considering the given parameters 

and they consist of set of Bézier paths to be drawn

2.2. Leaf Shapes

There are  many different  leaf  shapes  in  the nature.  They are categorized by 

botanists  for  easy identification.  Figure  2.2 shows different  types  of  leaves.  The 

following is the list of common leaf shapes.

• Acicular: needle shaped (Figure 2.2 - a)

• Falcate: hooked or sickle shaped (Figure 2.2 - b)

• Orbicular: broad and circular (Figure 2.2 - c)

• Rhomboid: diamond shaped (Figure 2.2 - d)

• Elliptic: broad, oval shaped leaf (Figure 2.2 - e)

• Obovate: egg shaped, wide at tip (Figure 2.2 - f)

• Hastate: triangular with base loves (Figure 2.2 - g)

• Spatulate: spoon shaped (Figure 2.2 - h)

• Lanceolate: pointed at both ends (Figure 2.2 - i)

- 13 -



• Obcordate: heart shaped, pointed base (Figure 2.2 - j)

• Ocate: egg shaped, wide at base (Figure 2.2 - k)

• Cordate: heart shaped, pointed tip (Figure 2.2 - l)

• Flabelate: fan shaped

• Deltoid: triangular leaf

Figure 2.3: Pinnate leaves, a. odd pinnate, b. even pinnate, c. bipinnate

2.3. Leaflet Arrangements

Compound leaves has leaflets which are located on the midrib. Different leaves 

has  different  leaflet  arrangements.  The  most  common  arrangements  are  pinnate, 

palmate, alternate and rosette. In pinnate arrangement, leaflets sprout from both sides 

- 14 -

Figure 2.2: Various leaf shapes



of  the  midrib.  Figure  2.3 shows  pinnately  compound  leaves.  Pinnate  leaves  are 

classified as odd pinnate or even pinnate according to the number of leaves sprout 

from the top.  Bipinnate leaves have leaflets that are also pinnately compound. In 

alternate arrangement leaflets alternately sprout from the sides of midrib.  In palmate 

arrangement, leaflets are radiated from the base of the leaf. Leaflets can vary in size 

and shape. Figure 2.4 shows alternate and palmate arrangements.

Figure 2.4: a. Palmate and b. alternate arrangement

Figure 2.5: Leaf venation patterns: a. arcuate, b. dichotomous, c. palmate, d. pinnate,  

e. reticulate, f. parallel

- 15 -



2.4. Venation Patterns

Leaves have veins to supply water and minerals to its cells. There are different 

distribution patterns of veins. Venation pattern modifies texture of the leaf. Figure 2.5 

shows common leaf patterns that are listed below.

a) Arcuate: secondary veins bends towards the tip

b) Dichotomous: veins branch symmetrically

c) Palmate: veins distributed from a central point

d) Pinnate: secondary veins are paired oppositely

e) Reticulate: smaller veins form a network

f) Parallel: veins are parallel to each other

2.5. Margin Types

The leaf margin is the boundary area extending along the edge of the leaf. There 

various types of margins. Which are illustrated in Figure 2.6. Some of the margins 

are defined in the following:

Entire type has a smooth edge with neither teeth nor lobes. These leaves are 

rather simple. Lemon tree leaf is an example to this type.

Toothed leaves have a saw like margin with small tooth that can vary in size, 

from very small to medium; in sharpness, from needle-like to soft; and in shape from 

rounded to points. Toothed margin is further divided into following types: 

• Serrate: teeth facing to the tip

• Dentate: teeth facing outside the leaf

- 16 -



• Crenate: round and broad teeth

• Incised: deeply cut with sharp, irregular teeth

Lobed leaves have some type of indentation toward the midrib that can vary in 

profundity and shape, rounded or pointed.  In our system, generally,  lobes are not 

defined using margin shapes, they are an extension of the veins. [15], [16], [17]

Figure 2.6: Various margin shapes; a. serrate, b. crenate, c. doubly serrate, d. entire

- 17 -



Chapter 3 – Leaf Modeling

We have proposed a method using positional information system method with 

specifically chosen parameters to create a leaf. In a positional information system, an 

organic object is represented as positional parameters which allow user to specify 

different values for different positions  [1]. These parameters are represented with 

functions or better yet, curves. In this research, we have decided that using Bézier 

curves will allow defining positional parameters easily.

We have observed different leaves and searched for common parameters that 

exist in them. As the result of this observation, we conclude that a leaf should be 

represented as a hierarchy of smaller leaves and/or veins that have different values 

for parameters and a method to distribute them within its parent. While choosing 

these parameters, we have taken care to keep number of parameters less, while still  

having  the  ability  to  represent  different  types  of  leaves.  Keeping  number  of 

parameters less helps users to learn the system faster and reduces the time required to 

generate the leaf. 

We have categorized these parameters into five different groups. It is important 

to note that some of the parameters discussed in the following sections are Bézier 

curves. These parameters either denote a shape, or a value that can change along the 

leaf. In the following list parameter hierarchy is displayed.

• Hierarchy

• Sub levels

• Name

- 18 -



• Shape

• Strength

• Length/strength

• Curvature

• Maximum length

• Straighten

• Blade shape

• Show blade

• Vein shape

• Vein length

• Margin

• Margin shape

• Margin repeat

• Margin size relation

• none

• blade size

• blade strength

• margin strength

• Margin strength

• Leaf strength relation

• Placement parameters

• Distribution method

• free

• opposite

• alternate

• circular

• top/down

• Spacing

• Angle

• Tip

- 19 -



• Randomization

• Bézier

• Curvature

• Blade shape

• Vein shape

• Margin shape

• Value

• Strength

• Length

• Margin repeat

• Angle

• Spacing

3.1. Hierarchy

There are tree basic leaf types: simple, compound and lobed. All these leaf types 

has a hierarchy of smaller leaves and/veins. Simple leaves have veins inside a single 

leaf blade.  Compound leaves have leaflets which are actually simple.  Lobed leaves 

have  multiple  blade  fragments  that  are  combined together  to  form complete  leaf 

blade. They also have veins reaching to the lobes. For the sake of simplicity, leaflets 

also  represent  lobes  in  this  document;  unless  specified  otherwise.  A  careful 

observation shows that we have leaflets (a simple leaf is also a leaflet) and veins. 

Since leaflets and veins are bent and placed similarly (even used together), we have 

decided to have only one type of object; leaf level.

A leaf level is the basic template, blueprint, of a vein or leaflet. It is defined as a 

set of parameters. It can have a blade and/or vein can define a leaflet or vein. A leaf  

level may also have sub leaf levels. These levels are placed on this level according to 

- 20 -



placement parameters defined in Section 3.4. Sub levels are useful to create leaflets 

or venation patterns. How the leaf is affected by the number of sub leaves can be 

observed from Figure 3.1. In this figure “a” shows a simple leaf having only one leaf 

level, it has both blade and vein. “b” shows another simple leaf which has lateral 

venation pattern. Leaf “c” and “d” is a compound leaf. The leaflets of leaf “d” is an 

example of lobed leaves. All the leaves given in Figure 3.1 have only one parent and 

one sub level.  However,  by the definition of our system, this  hierarchy does not 

necessarily mean that each leaf level could have only one sub leaf; they can have any 

number of sub levels. Moreover, a leaf level can be parented by more than one level. 

Our  system  does  not  allow  recursions.  Apart  from  other  visual  or  arrangement 

parameters, every leaf level has also a name to identify itself.

Figure 3.1: Difference in number of leaf levels

3.2. Shape parameters

Shape  parameters  specify  overall  shape  of  the  leaf,  these  parameters  are 

curvature,  length,  blade  and/or  vein  shape  and  the  change of  curvature  over  the 

parent leaf level. Margin parameters, which also affect the final shape of the leaf by 

adding details, is discussed in Section 3.3.

- 21 -



In nature, size and length of leaflets or veins within a leaf varies. Often this 

variance  is  systematic  and  affects  both  length  and  size  together.  For  instance, 

consider a compound leaf. Generally leaflets at the end of the leaf are smaller than 

the ones at the middle. To simulate this behavior, we have implemented  strength 

property for each sub leaf. It is a property of a sub leaf, not a parameter. Therefore,  

we can define strength as a property of a sub leaf which affects other parameters by 

decreasing their sizes. These parameters are blade shape, leaflet or vein length, vein 

thickness and size of margins (if strength is chosen as size affecting parameter). Its 

value ranges from 0 (no strength), to 1 (full strength). For instance, consider two 

leaflets of the same type, one having strength of 0.5 and other 0.25. The first leaflet's 

length, blade and vein size will be twice the second one. 

Figure 3.2: Effect of different strength parameters

Strength  parameter directly  affects  the  strength  of  the  sub  leaves  that  are 

connected to the leaf level that it is defined for. This parameter is specified with a 

curve. The x-axis of this parameter is the distance from the start of the leaf's main 

curve while y-axis specifies strength amount. The strength of a sub leaf, sprouting 

from a point, is the product of the strength property of this sub leaf and strength 

parameter's value at that point. Therefore, strength is a cumulative property of a sub 

leaf which is modified by strength parameters of the parent leaf levels.  Figure 3.2 

shows the effect of this parameter.

- 22 -



Although the size and the length of a leaflet or vein is generally proportional, 

there can be exceptions. Length per Strength parameter is a positional parameter 

which allows user to specify different lengths (y-axis) for different strengths (x-axis). 

Starting  value  of  this  parameter  instructs  length  to  be  directly  proportional  to 

strength. We have implemented this parameter, so that user may choose how strength 

affects the length. Instead of proportional effect, it can be modified to set length of 

every sub leaf to the same value while strength still affects the thickness / size of 

blade or vein.

Main curve of a sub leaf is used to bend both blade and vein. Leaflets or veins  

that  are  under  a  sub  leaf  sprout  from  the  main  curve  therefore,  it  also  affects 

placement of those sub leaves. 

Curvature parameter is the base curve that is used to calculate the main curve. 

It is modified by properties of a sub leaf to form the main curve. These properties are 

strength, length and straighten. It is also rotated and moved to adjust alignment on 

the parent leaf. Effect of this parameter is extensive since changing this parameter 

bends the current leaf level and any leaf levels that are connected to it. This shape is 

not always used fully.  If the strength of a sub leaf is less than full  value, only a 

portion  of  this  curve  is  used.  The  amount  that  will  be  used  is  specified  by 

length/strength parameter value for the given sub leaf strength. Figure 3.3 shows the 

effect of this parameter. 

Maximum length parameter specifies the length of the current leaf level at full 

strength.  It  is  specified  as  the  percentage  of  the  canvas  width.  This  parameter 

modifies the size of curvature instead of just stretching it. 

- 23 -



Figure 3.3: Different curvature parameters and their results

Many compound leaves have changing curvatures. Especially, the leaflets close 

to the tip is less curved than others. To address this behavior we have implemented 

straighten parameter which affects  the shape of  the curvature by morphing the 

given curve to a straight line. The value (y-axis) of the parameter at the given sprout 

point (x-axis is mapped to parent leaf's main curve) determines the amount of the 

effect. This parameter is useful to change curvature of sub leaves along the parent 

leaf. Figure 3.4 shows its application.

Figure 3.4: Effect of straighten parameter

Blade shape parameter specifies the shape (curve) of the leaf blade, and it is 

bent over main curve to produce final leaf blade for the current sub leaf. This shape 

is not the final shape of leaf blade, there can be multiple sub leaves that affect the 

blade shape of the leaf. Their combined shapes produces lobed or compound leaf 

- 24 -



shapes. Moreover, margin parameters can affect the actual blade of the leaf. In Figure

3.10, a lobed leaf is shown which has multiple sub leaves that affect the final leaf 

blade. Figure 3.5 compares different blade shapes. The users are free to show or hide 

blade of a leaf level by changing show blade parameter.

Figure 3.5: Different blade shapes

Vein shape parameter modifies  the  outline  shape  /  thickness  of  vein.  This 

parameter is a curve that is bent by main curve to become final vein shape for the sub 

leaf that it belongs. It is also important to note that leaflets always sprout from the 

main curve, not from the edge of the vein. The Vein of a leaf level can be hidden by 

setting show vein parameter to false. Figure 3.6 shows different vein shapes.

Vein length parameter changes the coverage percentage of the vein to the main 

curve. It also affects the placement of the sub leaves as they should sprout from the 

vein.

Figure 3.6: Different vein shapes

- 25 -



3.3. Margin Parameters

Margin is an important and distinguishing feature of a leaf.  Figure 2.6 shows 

different margin properties of different plants. Leaf margins are repeated along the 

leaf blade, therefore we have implemented a system where user specifies the repeated 

shape and how it should be repeated. Margin parameters can be enabled or disabled. 

When it is disabled, the “entire” margin shape is used.

Margin  shape parameter  specifies  the  repeated  shape  (curve).  This  curve 

specifies only one part of the entire margin. This shape is resized according to margin 

size relation parameter. Margin repeat parameter is used to specify the times that the 

margin shape  is  repeated.  The number of  repeats  can  be  relative  to  the  sub leaf 

strength reducing the number of repeats.

Size of the margin shape can be changed along the leaf blade. For this purpose 

we have introduced Margin size relation parameter which specifies the property of 

the  current  leaf  level  that  should be used to  scale  margin  shape.  This  parameter 

should act after the repeating process. There are four options. In the option “none” 

the margin size is not modified. Blade size option scales the margin to the size of the 

current sub leaf's blade at the specified point.  Blade strength option resizes margin 

shape according to the leaf level strength (the value of the parameter at that point not 

the cumulative strength property) at that point. Final option, margin strength, allows 

user to specify the margin size with another parameter. These options are represented 

to allow user to select and existing parameter which is already defined, instead of 

defining a new one. Leaf strength relation allows how much strength of the current 

sub leaf affects the size of margin. This parameter is a percentage value.

- 26 -



3.4. Placement Parameters

These parameters control how a leaf level is placed on the parent level. These 

parameters help to control the shape of compound and lobed leaves as well as leaf 

venation patterns.

Distribution method determines how the sub leaves (or veins) are organized on 

the parent leaf. This affects placement of leaflets in a compound leaf, lobes in a lobed 

leaf and venation pattern. There are six distribution methods. 

The first  distribution  method is  free distribution.  In  ,this  method,  leaflets  or 

veins sprout from opposite side  (top/bottom) of the parent leaf is not aligned. This 

method is  exactly the same as opposite if  there is  no randomization.  In  opposite 

method, opposing sub leaves are placed at the same point. This method is used to 

create pinnately distributed leaflets or venation patterns. Alternate method places sub 

leaves alternately to opposing sides. This method is used for alternate arrangements. 

In circular method, sub leaves are placed in different angles sprouting from the same 

point. This method can be used to obtain rosette, palmate and digitate shaped leaves; 

palmate and rotate venation patterns. Angle parameter is ineffectual in this method 

since  the  distribution  method  is  responsible  from  angle  calculation.  In  top and 

bottom distribution method,  sub leaves  are  placed to  one side of the parent  leaf. 

Figure 3.7 compares different types of distribution methods.

- 27 -



Figure 3.7: Different distribution methods

In  distribution  methods  other  than  circular,  sub  leaves  are  placed  along  the 

parent sub leaf's main curve. The distance between sprout points is controlled by 

spacing parameter. Spacing parameter is defined as a curve where x-axis denotes 

the distance from the start of the parent leaf's main curve while y is the distance that 

should  exist  between  leaflets  or  veins.  This  parameter  also  affects  circular 

distribution  method  by  determining  the  angle  between  sub  leaves.  Spacing  can 

relative to the strength of the sub leaf.  If it  is relative, the number of sub leaves 

placed depends on the strength; otherwise number of sub leaves that are placed on 

the same leaf level is always same, regardless of its length or size. In  Figure 3.8 

effect of spacing is shown.

Figure 3.8: Effect of spacing parameter

- 28 -



Angle parameter controls the angle between sub leaf and its parent; because it 

is a curve, different angled sub leaves can exist on same parent. Since the shape 

(main curve) of the sub leaf is not a straight line, the actual angle between main 

curves of sub leaf and parent can be different than the determined value. Figure 3.9 

shows the effect of angle parameter. 

Leaf levels can also be specified to have  tips. The tip is a leaflet that sprouts 

from the end of the current sub leaf. All the positional parameter values are taken 

from the last point of the curves.

Figure 3.9: The effect of changing angle parameter

3.5. Randomization

Most  plants  in  nature  are  disordered  and  their  features  are  imperfect.  This 

behavior can also be observed in leaves. If we take two leaves from the same plant, 

we can easily notice that they are different, even if they are at the same size. To 

simulate  this  property,  we  have  introduced  randomization  to  the  system.  In  our 

system a sub leaf has properties (parameter values specific to that sub leaf) that are 

defined as curves or values. Therefore, there are two types of randomization. First 

one  affects  the  shapes  (curves)  and  called  Bézier  randomization.  This  type  of 

randomization affects curvature, blade, vein, and margin shape. Since these curves 

- 29 -



are  defined with Bézier  paths,  they contain end points  and control  points.  These 

points are defined as a rectangular area rather than a single point so that the exact  

control point can be randomly selected within that rectangular area.  This method 

allows easier control of the randomness.  Figure 3.10 compares two leaves that are 

randomly generated from the same set of parameters.

Figure 3.10: Different leaves created using same parameters

Value randomization method is used for angle, spacing, length, margin repeat, 

and strength values. In this method, parameters are not directly affected. Instead, the 

calculated values for a specific leaflet/vein are altered. This randomization method 

requires four different parameters and allows two different amount of randomization 

to  be specified.  First  parameter  specifies  the chance of  using first  randomization 

method.  Second  and  the  third  parameters  are  the  range  of  first  type  and  last 

parameter specifies the amount of change that can occur for the second type. This 

method allows the finer control of randomness. For instance,  it  is  possible to set 

range of the second type to zero, to have a regular leaf with few disoriented leaflets. 

Figure 3.11 shows the application of this method.

- 30 -



Figure 3.11: Value randomization

- 31 -



Chapter 4 – Bézier Class and Operations

4.1. Introduction

In this  study,  leaves  are  formed and defined using Bézier  curves.  Moreover, 

every step that are performed to generate the leaf modifies Bézier paths to perform 

its functionality. Therefore, this chapter defines Bézier curves and its implementation 

in the project. In section 4.2, general information regarding Bézier curves is given. 

Section 4.3 defines how they are used within this project as well as the terminology 

used and operations that are performed on them.

4.2. Bézier Curves

Bézier  curves  were  originally  introduced  by  Paul  de  Casteljau  in  1959. 

However, they became a famous shape only when Pierre Bézier, French engineer at 

Renault,  used  them to  design  automobiles  in  the  1970's.  Bézier  curves  are  now 

widely used in many fields such as industrial  and computer-aided design, vector-

based drawing, font design and 3D modeling. [18]

4.2.1. Bézier Curves in Vector Graphics

In vector graphics, curves are a common shape. In most vector systems, curves 

are defined with Bézier curves, where they are mostly cubic Bézier curves. However, 

some applications use quadric Bézier curves for simplicity. In the following list some 

of the systems that use Bézier splines to represent curve primitives are displayed.

• TrueType fonts (quadric)

- 32 -



• Type 1 fonts (cubic)

• SVG Format (cubic)

• Inkscape, Gimp, Corel Draw/Photopaint, Photoshop (cubic)

4.2.2. Cubic Bézier Curve

This type is the most commonly used Bézier curve.  This is a spline of third 

order and defined by four points: two endpoints (nodes, anchor points) (P1, P4) and 

two control points (P2, P3).  The control points do not lie on the curve itself  but 

define its shape. The curve,  shown in  Figure 4.1, starts at  P1 goes  towards  P2 and 

arrives  at  P4 coming  from  the direction  of  P3 to  create  a  smooth  curve  whose 

endpoints will be P1  and P4. The curve should have the additional property that the 

slope  of  the tangent  line leaving  P1 should  be  the  same as  the slope of  the line 

connecting points P1 and P2. P2 fact, the reason point P2 is called a control point is that 

the position of  P2 relative to P1  determines the slope of the curve as it leaves point P1 

and starts bending towards point P4. In general, the curve need not go through or even 

be near either P2  or P3. [19]

Figure 4.1: A cubic Bézier curve

Equation of the cubic Bézier curve is defined in Illustration 4.1.

- 33 -



Illustration 4.1: Bézier Curve formula

Bézier equations are parametric equations in variable  t,  and are symmetrical 

with  respect  to  x and  y.  The  parameter  t,  varying  in  interval  [0, 1],  cuts  the 

segment P1 – P4  into intervals, according to the wanted accuracy. When t = 0, the 

result is B(0) = P1 . For t = 1, the result is B(1) = P4. The Bézier curve is tangent 

to the segment of line P1 – P2  at the start and P3 – P4  at the end. The curve remains 

within the convex hull of the control points.

4.2.3. Bézier Curves of Higher Degrees

Bézier curves of any degree can be defined. Figure 4.2 shows sample curves of 

one through four. A degree n  Bézier curve has n + 1 control points (P0,  P1, ....,  Pn) 

and its formula is defined  in Illustration 4.2. [20]

Illustration 4.2: Bézier Curve formula for degree n

- 34 -

Figure 4.2: Four different degree Bézier curves

B t  = 1−t 3⋅P1  3⋅t⋅1−t 2⋅P2  3⋅t 2⋅1−t ⋅P3  t 3⋅P4

B t  = ∑
i=0

n

n
i ⋅1−t n−i⋅ti⋅Pi



4.3. Application

Since Bézier curves are used commonly in this project, it is clear that we should 

design a system to handle Bézier curves and operations from a central system. This 

system  will  allow  us  to  progress  faster  and  increases  the  readability  and 

maintainablity of the source code.

To represent and modify Bézier curves, we have implemented a C++ class. This 

class is responsible for all Bézier operations including transformations, save, load 

and drawing. To increase usefulness, we have implemented a system where a Bézier 

path is defined as a set of curves which are connected to each other. We have created 

three classes to handle specific data and tasks.  Point class stores information of a 

single point. This can be an endpoint (on the curve) or a control point. Segment class 

stores information of a single Bézier curve. Since last point of a segment is the start 

point of the next one, end points are stored in Bezier class and only refered within a 

segment. This allows a changing point that is common to two segments to affect both 

segments.  Bezier class  is  the  Bézier  path  which  contains  multiple  segments. 

Moreover,  a Bézier  path can have randomization information that are  used while 

creating a leaf. This information is stored in Point class.

4.3.1. Terminology

Before starting to define the operations that are performed by a Bézier path, we 

will explain the terminology that is used in our system.

• Bézier Curve: always means cubic Bézier spline

- 35 -



• Segment: is an individual Bézier curve. However, in the actual system every 

segment is connected therefore the start point of a segment is the end point of 

its preceeding matrix

• Bézier path: is a series of segments, can be further defined as closed or open. 

A closed path defines an area and can be filled

• t: is the period of the Bézier spline which is defined as P = B(t)

• Endpoint, node: start  and end point of a Bézier curve, or in other words 

control points of the curve that lie on the curve

• Control points: are the points between two end points of a segment which do 

not lie on the curve itself, just affect its shape

• Place: is a variable that is defined as the distance from the beginning of the 

path. Its important to note that a path can contain more than one segments 

therefore place is does not have the same value with t

• Value curve: is a Bézier path which has only one Y-axis value for each X-

axis value (one-to-one function). It can be tought as a simple horizontal curve 

that does not wraps around itself

- 36 -



4.3.2. Bezier Class Properties

As it has been discussed before, a leaf is a set of Bézier paths which are formed 

by manipulating other paths. These manipulations are handled by the Bezier class. 

Following operations  can be performed on a  Bézier  path:  translate,  scale,  rotate, 

mirror, combine, finding value for a given X on a value curve, finding segment t 

(period) at a given place, offset, duplicate, randomize, break (adding a new segment), 

determining slope/angle at a given place or period, reducing Y difference, save XML, 

load XML and draw. All these functions are performed in vector space and are not 

affected by resolution or aliasing. [21]

4.3.3. Translate, Scale, Rotate and Mirror

Translate, rotate and mirror are basic transformations in computer graphics. To 

apply these transformations, every point on the Bézier path is transformed. Translate 

function moves control  points  by the specified X and Y distance.  Scale  function 

resizes the given curve by the given ratio for X and Y axis. This transformation uses 

(0,0) point  as  origin.  It  also  modifies  randomization  data  in  the  same manner. 

Rotate  function  rotates  control  points  by the  given  angle  and  uses  the  specified 

origin.  To mirror  a  curve,  there  are  two mirror  functions,  horizonal  and verticle. 

Mirror functions determine the effective width or height of the curve and mirror it 

using  center  point  as  origin.  Except  scaling,  these  functions  does  not  modify 

randomization data.

4.3.4. Combine

This function combines two Bézier paths together. This operation basically adds 

segments of the given path to the current one. This combination can happen in two 

- 37 -



ways. In the first one, method starts adding segments from the first segment of the 

second path. Second method is mirrored combination; in this method, segments of 

the second path are added in reverse order. This method allows us to create a closed 

path.  When  adding  the  first  segment  to  the  current  path,  first  point  (or  last  if 

mirrored) of the second path and the last point of the first path is checked. If they are 

at the same location system proceeds to adding segments. However, if they are not 

overlapping, a new segment is created between these two points; this segment is a 

straigth line. The resultant path preserves randomization data.

This function is used to combine margin shapes together without mirror option. 

It is used with mirror option to create closed paths of blade and vein shapes.

4.3.5. Finding Y Value at Given X

This function returns value for the given X-axis value. This is used to determine 

parameter value at a given point. For this function to work properly the Bézier path 

in question should be a value curve. Otherwise, the return value of this function is 

not determinative, because there will be more than one value for a given X. Although 

the task of finding Y value for a given X seems trivial, it is not the case for splines,  

because there is no function defined as Y = f(x). It is defined as P(x, y) = B(t). 

Therefore, we should approximate the value of t where  Px value gets close to the 

requested  X-axis  value.  We  use  enhanced  binary  search  method  to  achieve  this 

quickly. This method estimates the correct t value from the rate of x movement over 

t value change. According to our calculations, after the 5th step, error rate is around 

E-5 which is quite satisfactory. 

- 38 -



4.3.6. Finding Segment and Period at Given Place

These  functions  cannot  be  separated  because  a  period  is  valid  only for  one 

segment. Finding the segment at a given place is trivial since the starting place of 

every segment is buffered. This function only checks which segment that place is in 

and returns that segment. 

The second function calculates the period by summing the distances between 

interpolated  points  of  the  Bézier  curve.  This  system uses  adaptive  interpolation 

technique where increment in  t value is set to a value where the distance between 

interpolated points will  become 0.25 – 0.5 pixels.  This function could further  be 

optimized by Bézier subdivision. However, this requires further study of speed and 

error rate comparison of two methods.

4.3.7. Determine Slope/Angle

These functions calculate the slope at the given period or place on the path and 

either it returns the slope or the angle depending on the request. These functions use 

first derivative of Bézier curve function to determine the slope at the given period. If 

a place on the path is given instead of period, period and the segment is found as the 

first step. After this step, slope calculation function returns y/x value without further 

calculation. Angle function uses arc-tangent to calculate the angle and returns the 

angle. The following is the first derivative of a Bézier curve. Derivation is made over 

the variable t. Illustration 4.3 shows the first derivative of Bézier Curves. [22]

Illustration 4.3: First derivative of Bézier Curve formula

- 39 -

B ' t  = −3⋅1−t 2⋅P0  3⋅1−4⋅t3⋅t 2⋅P1  3⋅2⋅t−3⋅t2⋅P2  3⋅t 2⋅P3



4.3.8. Offset

This method is the key operation for building a leaf. It offsets a curve (base 

curve) using the values of the second curve (offset parameter). This operation also 

allows a static and curve based multiplier to be specified. This multiplier and y axis 

of the offset curve is used to determine offset amount. Additionally, it is possible to 

specify amount of base curve to be used. Lastly, this function can create mirrored 

output. This operation can also be defined as envelop function. It bends the x-axis of 

offset parameter curve then returns the result.

Leaf  blade  and  vein  shape  are  formed  from  blade  shape  and  vein  shape 

parameters. They are offset and wrapped around the main curve. Margin shape is also 

applied with the same method, but using modified blade shape as base curve. 

Operation starts with calculating transformation value which calculates curve 

distance from x-axis of the offset parameter. This value will be used to map x-axis of 

the  offset  parameter  to  the  base  curve.  While  calculating  this  value,  move  rate 

(amount of the base curve that will be used) is also used. After these calculations 

offset parameter curve is divided so that it will include segments on the base curve.  

This allows us to only consider segments of the offset parameter. 

- 40 -



Figure 4.3: Bézier offset function applied to leaf blade

For every segment on offset parameter, algorithm creates a temporary segment. 

To calculate points of temporary segment, start and end points and two points in the 

middle of the offset segment is taken. Y-axis values of these curves are unmodified 

offset amount. Then the x-axis value of these points are calculated. With x-axis value 

destination points that are on the base curve is obtained, transformation value is used 

for  this  purpose.  After  this  calculation,  points  on the  base curve are determined. 

Using the slope of the base curve at the found points, angles which are perpendicular 

to the base curve at those points are calculated (if mirror option is chosen -90° is 

used instead of 90°). Then these points are moved by the modified offset amount 

rotated by the calculated angle. Offset amount is modified by multiplying with static 

multiplier and curve multiplier at the x-axis value of offset curve points. All these 

four points are on the new segment that should be formed. Using these points, we are 

able to estimate control points of this temporary segment. Illustration 4.4 is used to 

determine control points.

- 41 -



d 1=P1−P0 , d 2=P2−P1 , d 3=P3−P2

t 1 =
d 1

d 1d 2d 3
,

t 2 =
d 1d 2

d 1d 2d 3

C1 =
3t⋅t2−1⋅t2

2⋅P0 − t2−1⋅t2
2⋅P0−P1  t1

3⋅P0−3t2⋅P02t2⋅P0−P2t2
2⋅P3 − t1

2⋅P0−3t2⋅P02t2
3⋅P0−P2t2

3⋅P3
3⋅t 1−1⋅t 1⋅t1−t2⋅t2−1∗t2

C2 =
− t2−12⋅t2⋅P0−P1  t1

3⋅ t2−12⋅P0−P2−t2⋅P 32t22⋅P 3  t1⋅t2−12⋅12t2⋅P0−P2t2
3⋅P3 − t12⋅2−3t 2t2

3⋅P 0−2P22t2
3⋅P3

3⋅t1−1⋅t1⋅ t1−t2⋅t2−1∗t2

Illustration 4.4: Determining control points

After all temporary segments are obtained, the base curve is modified to have 

the obtained segments. Figure 4.3 describes this operation while the following is the 

formal definition of the discussed algorithm.

• For every segment in our offset curve,

• Let Boffset t   function be Beziér function of the current segment,

B ' t   function to be the target function

• P0=B0  , P1=B1 /4 , P2=B3 /4 , P3=B1

• X-axis values of P0, P1, P2, P3  is calculated

• Using x-axis values, positions, points ( Q0, Q1, Q 2, Q3 ) and angles ( 0, 1, 2, 3 ) of 

these points on the base curve is calculated

• These points ( Q0, Q1, Q 2, Q 3 ) are moved by offset amount (y-axis value of
P0, P1, P2, P3 ) perpendicular to the curve resulting points ( Q0 ' , Q1 ' , Q 2 ' , Q3 ' )

• Let B ' t =1−t 3⋅P '01−t 2⋅t⋅P '11−t ⋅t 2⋅P '2t 3⋅P ' 3  then

• P '0=Q 0 '

• control points are calculated as follows

P '1 =
3t⋅t2−1⋅t2

2⋅P 0 − t2−1⋅t2
2⋅P 0−P1  t1

3⋅P0−3t2⋅P 02t 2⋅P 0−P2t2
2⋅P3 − t1

2⋅P 0−3t2⋅P 02t 2
3⋅P0−P2t2

3⋅P3
3⋅t1−1⋅t1⋅t 1−t2⋅t2−1∗t2

P '2 =
− t2−12⋅t2⋅P0−P1  t1

3⋅ t2−12⋅P0−P2−t2⋅P32t22⋅P3  t1⋅ t2−12⋅12t2⋅P0−P2t2
3⋅P3 − t12⋅2−3t2t2

3⋅P 0−2P22t2
3⋅P3

3⋅t1−1⋅t1⋅ t1−t2⋅t2−1∗t2

• P '3=Q 3 '

- 42 -



4.3.9. Duplicate

This  operation creates  a  complete  copy of  this  Bézier  path.  A curve  and its 

duplicate are independent of each other. Moreover, destruction of the newly created 

bezier object is in responsibility of the callee.

Figure 4.4: Defining ranges for randomization

4.3.10. Randomize

This function operates on all points and control points of the Bézier path and 

randomizes them according to their randomization range. Randomization information 

is  defined as  range independent  of  the  point  itself,  therefore,  using this  function 

second time creates a more randomized path.  Figure 4.4 shows defined ranges for 

randomization. The gray rectangles define the boundaries for the given point.

4.3.11. Segment Division

This  operation  divides  a  Bézier  segment  into  two  segments.  It  can  either 

performed on the curve which does not modify the shape of the path or an outside 

point can be used which became a part of the curve. First function uses Bézier curves 

ability to be divided from any point on the curve. This property is unique to Bézier 

- 43 -



splines. To find new segments, the method of finding point at the given period is 

applied without using the formula. This involves in finding tangent lines and their 

corresponding  points.  First  and  last  first-tier  points  (determined  on  initially 

calculated tangent lines) are used as the first and last control points of the first and 

second segment. Second tier points (obtained by intersecting a secondary tangent line 

with previous ones) are used as the last control point of the first segment and first  

control  point  of  the  second  segment.  This  method  does  not  use  approximation 

methods. Therefore, its efficient and precise.

Second method to break a curve into two segments is inserting a new point. This 

function sets the second point of the first segment and the first point of the second 

segment to the given point. Then it assigns missing control points to -10 and +10 of 

the  inserted  point.  This  function  also  checks  existing  control  points,  if  they  go 

beyond the bounding box of the newly created segments, they are moved inside it.  

This prevents formation of a highly deformed path.

4.3.12. Reducing Y Difference

This function is used to morph a given curve to a straight line. This function 

takes  amount  of  reduction  as  parameter.  When  this  parameter  is  1,  the  curve  is 

reduced to a line. This task is done by subtracting  amount × y from the y-axis of 

every point and control point in the path. This function affects this path, does not 

create a new one.

- 44 -



4.3.13. Save XML

This  method  creates  XML string  to  be  saved  into  leaf  definition  file.  This 

function takes its save name as parameter. Firstly, the starting point of the path is 

saved (firstpoint tag). Point objects put  x,  y,  randx and  randy (randomization 

range) into separate attributes. After saving first point, all segments are saved one by 

one.  Segment class saves its first and second control points as well as second end 

point. First end point is not saved because it is the last point of the previous segment 

(for the first segment it is the first point which is saved by Bezier class). 

4.3.14. Load XML

This method uses XML Parser libraries to read information that is stored within 

an  XML structure.  Loading method is  similar  to  saving,  first  point  is  read,  new 

segments are created and asked to load themselves using the data supplied by the 

XML file. To make the system more adaptable, loading operation does not make any 

checks. It reads the information it can find and uses default values for missing data. 

Moreover, any data which is not supposed to be present is ignored.

4.3.15. Draw

This function draws the given path on a given canvas. Canvas object is defined 

within Gorgon Graphics Library. It is an image object and can normally be drawn on 

a layer. But also, it allows its data sources to be modified. Since Bézier curve is a  

spline we have to determine points and draw lines between them. Normally these 

points  are  separated by a  fixed  amount  of  period.  This  results  variable  distances 

between points. When the point distance increases, curve looses its smoothness. It 

can be fixed by increasing number of points, however, this slows down the drawing 

- 45 -



process.  These  problems  can  be  solved  by adaptive  subdivision  method.  In  this 

method, a Bézier curve is divided into smaller curves recursively. Given a Bézier 

curve, this algorithm checks whether its close to a straight line. This check is done by 

calculating  two points  on  the  curve  and check their  distance  to  the  line  passing 

between first and last point of the curve. In our method, we have used the angle 

difference to calculate error rate, instead of calculating point to line distance If this 

distance is small enough a line is drawn. However, if its not, this curve is divided 

into two smaller curves. To speed up the process, our algorithm does not actually 

break the curve,  instead,  it  calculates  period range for  smaller  curves. And these 

newly created curves are checked separately. 

The method used in this study is first proposed by [23]. Using this method, a 

curve  of  600  pixel  length  is  drawn  using  120  lines.  Without  using  adaptive 

subdivision, we should use 300 lines to achieve a smooth curve. This algorithm is 

shown in Illustration 4.5.

- 46 -



1. For a given curve of P0, P1, P 2, P3 and δ which is the threshold angle of an almost 

straight line
2. Function B t=P0⋅t 3P1⋅t2⋅1−tP2⋅t⋅1−t2P 3⋅1−t 3

3. For t s=0, t e=1 calculate divide t ' s , t 'e

4. where function divide(te, ts) defined as

a. p0=B ts  , p1=B 
t e−t s

3
t s , p2=B 2×

te−ts

3
t s p3=B te

b. if
∣p0 , p1−p1 , p2∣∣p1 , p2−p2 , p3∣⇒

for t ' s=t s , t ' e=
te−t s

2
t s divide t ' s , t 'e

for t ' s=
te−ts

2
t s , t ' e=te divide t ' s , t 'e

else 

define the line B ts  , B te

Illustration 4.5: Bézier subdivision algorithm

After these points are calculated, this point list is sent to  DrawLines function. 

This function takes an array of points and draws an anti-aliased line with variable 

thickness. It is very important to note that this function takes an array of floating 

point  numbers,  not  integer  values.  This  method is  used  to  prevent  discontinuous 

edges between lines. 

This function uses reverse rotation method to draw variable thickness line. It 

basically rotates and translates a rectangle of the given height and length to the place 

where the line should be drawn. This method creates perfectly anti-aliased, variable 

thickness lines.

- 47 -



Chapter 5 – Implementation

5.1. Introduction

We have built an application to validate our model and provide a useful tool for 

graphic  designers.  This  application  is  written  in  C++ and  uses  object  orientated 

programming methodologies. We have used Gorgon Widget engine to provide user 

interface. This system is chosen because it is extensible and based on C++ and object 

oriented methodologies.

In this chapter, implementation details of the application is explained. In section 

5.2, the underlying engine of our application is defined. Widget engine system that is 

used within this project is introduced in section 5.3. Fourth section discusses how the 

leaf data and its representation is stored. In the fifth section, leaf building process is 

explained. The next section details the process of rendering, drawing, of a leaf. In 

section  seven,  user  interface  design  is  described  with  details.  The  last  section 

describes how save/load and export features work.

5.2. Gorgon Game Engine (GGE)

Gorgon  Game  Engine  is  a  system  that  is  written  in  C++  to  meet  the 

requirements of a game or game related application. A game that is written using this 

system is shown in Figure 5.1. GGE has a dual-layer architecture that supports many 

functionality  including  graphics  (2D,  3D hierarchically  layered  system including 

clipping,  transformations,  ordering,  raw  and  prepared  image  support),  sound 

(including fast 3D positional surround support), video and multimedia, keyboard and 

- 48 -



mouse input (organized and managed within graphic layer system), mouse pointer 

system,  interval  events,  animations  (both  image  based  and  time  based  effects), 

graphic  effects  and  resource  support  with  graphics,  sound  and  data.  Dual  layer 

system allows easy adaptation where back-end layer is responsible to communicate 

with low level API where a fixed front-end is used by programmers. Its primary goal 

is to be useful without sacrificing speed.

Gorgon Resource  Files  are  used within  this  system.  This  binary file  type  is 

extensible  and  can  preserve  both  backward  and  forward  compatibility.  Gorgon 

Resource Engine (GRE) is a sub module of game engine that allows loading these 

files.  These  files  contain  a  directory  system  where  resources  are  placed 

hierarchically.  Moreover,  any  resource  type  can  contain  other  resource  types. 

Resources  also  have  commands/actions  and properties  related  with that  resource. 

This file architecture allows partial load or easy export and import support because a 

file only contains some information (file type and signature) and the root directory. 

Currently there are six basic resources: text, image (uncompressed, PNG, JPEG (no 

alpha support) and LZMA compression), data array (can contain text, number, color, 

point, or rectangle), sound (uncompressed or lossless LZMA compression), bitmap 

fonts, and animations. Gorgon Widgets File is also this type of file that supports more 

and complex objects.

Gorgon Game Engine uses  OpenGL to access  graphics  card.  This  system is 

hardware accelerated. It means any transformations, light and opacity calculations 

are made by graphics card rather than CPU. It also uses graphic card's memory to 

store images. This allows faster drawing of images. These abilities improve the speed 

- 49 -



of  the  system while  layer  system increases  its  usefulness.  GGE graphics  system 

contains main layer initially. This layer can contain other layers, however, nothing 

can be drawn on it.  There are different types of layers which can be grouped as 

graphical (2D and 3D), input and hierarchy layers. These layers can contain any layer 

as its sub layer and can be ordered within its parent. For instance, to draw an image 

with colorizing support one must use Colorizable2DLayer.

OpenAL (Open  Audio  Library)  is  a  system to  access  sound resources.  This 

library is supported by Creative Labs. This library is an open system and can be used 

with any sound card. GGE supports wave type audio system which can be used either 

as  background  music  or  positional  audio.  Sound  engine  has  its  own  garbage 

collection  system which  removes  wave  controllers  that  are  not  needed  anymore. 

Sound resource,  which  can  be  loaded by GRE,  can  directly  be  played with  this 

system.

Both keyboard and mouse input system reads data from operating system calls; 

however,  they  are  presented  with  two  different  methods.  Keyboard  input  uses  a 

bubbling event system. In this system keyboard input requesters register their event 

handlers. When an input is to be distributed, the last request takes precedence. If this 

requester does not use the key that is pressed, that key stroke is propagated to the 

next handler. 

Mouse input system is tied to the layer architecture. A layer can be target of 

mouse input and produces events depending on it.  These event handlers define a 

region where the mouse events originated from, is given to them. This system also 

passes the event to the layer below if it is not used. 

- 50 -



Pointer  system reads  pointer  information,  which  may contain  many pointers 

with their types and hot-spot information, from the given resource directory and is 

responsible of displaying, moving, changing and restoring pointer. It  has a multi-

consumer method to display pointers. This method allows pointer to be changed by 

an object while another change request is made by another call. These requests can 

be  canceled  with  any order.  The pointer  specified  by the  latest  active  request  is 

shown. If there is no request, this sub system displays default pointer. This system 

also hides in game pointer and shows operating system pointer when the game looses 

its focus or pointer moves out of window.

Figure 5.1: A game written with GGE

There is a generic animation system within this system. This system can either 

work discretely (frame based) or continuously (time based). Animation resources that 

are loaded from resource files are managed by discrete animation controller. This 

allows  frame  based  events,  speed  adjustments,  pause,  frame  control,  playing 

direction, and looping. On the other hand, continuous animation system is used by 

- 51 -



effect  animations.  These  effects  contain  layer  mover/sizer,  tinting,  flipping 

animation,  and  counting  numbers.  The  number  of  these  effects  can  easily  be 

increased since there is no need to re-implement animation control mechanism.

5.3. Gorgon Widgets

This is the widget library that is used within this project. It is built over Gorgon 

Game Engine. This library is also written in C++. Its prime objective is to provide 

customizable  and  easy to  use  user  interface.  In  this  widget  system,  every visual 

aspect of a widget is specified by widget file.  A widget file is  a type of Gorgon 

Resource File. Widget definitions within this file is read and used as blueprints to 

create widgets. If the organization of this file is made according to widget registry 

system, it can provide easy creation of them.

Every widget in this system is based on IWidgetObject class which unifies all 

widgets and handles common tasks such as move and resize. This system allows easy 

implementation of new widgets. A widget called Bézier Control is created over this 

system to be used within this project. This control uses Bézier Editor and ordinary 

button to accomplish its task. A button is used to open editor while displaying current 

path on it.  Bézier Editor,  which also uses other widgets to help displaying editor 

frame, action buttons, uses Interactive Bézier object. Interactive Bézier system uses 

pointer events to modify Bézier path. Curve editor also handles keyboard events such 

as arrow keys to help modifying the path.

- 52 -



5.4. Leaf Data and Representation

We have designed the system with object oriented methodology and we have 

used model  view controller  approach where the system can work without  a  user 

interface. The classes implemented for leaf generation, create instance of objects that 

are  designed  to  represent  the  generated  leaf.  These  classes  are  responsible  from 

exporting and drawing generated leaf.

LeafBlueprint class defines a leaf. It is used to perform leaf generation as well 

as save and load functions. This class holds all leaf levels in a list to perform these 

functions. StemLevel class defines a leaf level. It contains all the parameters defined 

for a leaf. This class is also responsible from building sub leaves.

Illustration 5.1: UML Diagram of the class architecture

- 53 -



Leaf class is the root class of the generated leaf. Some of its important methods 

are  export  and  draw  functions.  Subleaf class  represent  a  leaflet  or  vein.  It  is 

generated by Subleaf class. It contains blade and vein paths as well as sub leaves 

that are connected to it. Moreover, an internally used method to draw the leaf level it 

represent on a given canvas. This method should only accessed from other sub leaves 

and the Leaf class.

5.5. Generating a Leaf

A leaf can be created by calling Generate function of LeafBlueprint class. This 

function creates an empty Leaf class and calls build leaf function of the first sub leaf 

which is the midrib.

5.5.1. Build Function

Build function of Subleaf is called to create shape and adjust sprout points and 

parameters of its sub levels. It calls build functions of sub levels and stores their 

resultant classes in a collection. This collection will be used later, when the leaf is 

requested to draw or export itself. Build function only generates one leaflet or vein. 

However, it calls  BuildSubleaves function which calls Build functions of its sub 

levels to build its own sub leaves.

Build function requires strength of the current sub leaf its building as well as its 

location on the parent leaf, sprout point (coordinates), rotation and whether it should 

be mirrored. The values of these parameters are given by the parent leaf; however, 

midrib has no parent. Therefore, default values (1 for strength, 0 (start) for location, 

left-middle of the canvas for point, 0° for rotation and false for mirror)  are assigned 

- 54 -



for it.   If the given strength value is too low to produce a valid output (less than 

1/1000) this function does not produce a result and returns an empty sub leaf. Notice 

that this behavior is expected by the caller and no error is generated. After parameters 

are checked, strength value is randomized using value randomization method (see 

subsection 4.3.10). 

Second operation of this function is to create main curve. Main curve is derived 

from curvature parameter, so the curvature specified for this leaf level is duplicated. 

Then  this  newly  created  Bézier  path  is  scaled  to  fit  the  length  specified  with 

maximum length parameter. For this operation, its current length is calculated and 

resize  (see subsection  4.3.3) function of  Bezier class is called with the requested 

size  modification.  After  resizing,  main  curve  is  randomized  using  Bézier 

randomization. Straighten operation takes place as the next step. This operation uses 

y difference reduction function of Bezier class (see subsection 4.3.12). If mirroring 

is requested, Bézier path is mirrored vertically (see subsection 4.3.3). Vertical mirror 

is used because curvature parameter is specified horizontally. After mirroring, main 

curve is rotated around its first point by the amount specified by its parent. As the 

next step of this operation, main curve is moved to the requested point. The first 

point of the curve is used as the base. Offset operation on Bézier curves are not exact. 

They produce an estimation. Therefore, to increase the quality, application splits the 

main curve to create additional five segments. As the last step, amount of main curve 

to be used is calculated using length/strength parameter with the current strength. 

Only this amount of main curve will be used. Therefore, if the strength is low, this 

sub leaf will be shorter. Randomization is also applied to this value.

- 55 -



The next operation is to create blade of this sub leaf. This operation is performed 

only show blade option is chosen for this level. For this task, main curve and Shape 

parameter is duplicated twice; once for upper side, other for lower. Duplicated shape 

parameters are randomized and wrapped around main curves. Wrapping operation is 

performed by Bézier offset function (see subsection 4.3.8). After this operation, two 

halves of the blade is formed. If margin parameters are specified, these halves are put 

into further modification. Otherwise they are directly combined to form blade shape 

for this sub leaf.

Margin parameters modify top and bottom side of the leaf independently except 

repeat count. As the first step, repeat count is calculated. The value of the parameter 

is taken and if it is specified to be relative to strength, it is multiplied with current 

strength  value.  Then  repeat  count  is  randomized  according  to  the  randomization 

range defined for this leaf level. Second step is to create repeated margin shape. In 

this  step,  basic  margin shape is  duplicated and they are combined together.  This 

operation is repeated as much as the repeat value. This new Bézier path is duplicated 

for  the  bottom  side  of  the  blade.  After  that,  these  paths  are  randomized 

independently. As the next step, previously formed top and bottom blade shapes are 

offset with their margin curves. While offsetting, margin size relation parameter is 

used to determine factor of  the operation. This factor is supplied to offset function as 

well as curves. After this step, top and bottom side blade shapes are combined and 

shape of the current sub leaf is formed.

Creating vein  shape is  quite  similar  to  blade shape  generation.  Firstly,  main 

curve  and  vein  thickness  parameters  are  duplicated.  After  this,  randomization  is 

- 56 -



applied to new vein curves. In the next step, offset operation is performed on main 

curves using vein curves as offset parameters. Finally, modified curves are combined 

to  form vein shape of this  sub leaf.  These operations take place only if  the user 

chooses to show vein for this leaf level.

Both blade and vein paths are stored in the generated Subleaf class. 

The  last  operation  (excluding  cleanup)  while  building  a  sub  leaf  is  calling 

BuildSubleaves function. Main curve, sub leaf that is being generated, strength of 

the current sub leaf, sprout point, rotation angle and mirror values are given to this 

function.

5.5.2. BuildSubleaves

This  function  determines  build  parameters  and  calls  build  functions  of  sub 

leaves  that  will  be  under  this  sub  leaf.  It  separately  processes  every  leaf  level 

connected to the current one. This function acts on distribution method of these sub 

leaves. 

If distribution method is  free, top and bottom side of the sub leaf is processed 

separately. Firstly, distance factor is calculated by dividing the length of the main 

curve to maximum height of the parameter. This factor is used to transform value of 

the spacing parameter to actual distance that should exist between sub leaves. From 

the start of the main curve until the end, every point is checked if there can be a 

sprout point at that location. For this purpose, the distance from the last sub leaf is 

calculated.  This  distance  is  modified  by  current  strength  if  spacing  is  set  to  be 

relative to the strength of the sub leaf. By this way, if relation exists between strength 

- 57 -



and distance, there will be less number of sub leaves when the strength is low. If the 

distance from the last sub leaf sprout point is greater than the spacing requirement 

calculated by transforming the value of spacing parameter at that point using distance 

factor,  a  sprout  point  is  designated.  Spacing randomization is  taken into account 

while this comparison is made. Strength and angle for this sprout point is calculated 

using parameters of sub leaf level. Moreover, the angle of the main curve at that 

point is calculated. After this step, angle value is either added or subtracted from 

curve angle depending on mirror and whether working for top or bottom of the sub 

leaf. This is the same for determining whether to mirror the sprouting sub leaf. After 

these values are calculated, they are passed to Build function of the sub leaf level. 

When top side is finished, same procedure is applied to bottom side. Illustration 5.2 

the formalized method for free distribution model. Since top and bottom sides are 

handled separately,  randomness may cause sub leaves at top and bottom to be in 

different positions even in different numbers. Without randomization, this method 

produces exactly the same result as opposite distribution.

1 distance factor=
MaxParameterValue

MainCurve length

2
parameter factor=

MaxParameterWidth

MainCurvelength

3 distance=0

4 For every point in main curve

1 distance=distance1×distance factor

2 distance=distance×strength ,   if relative spacing is chosen

3 Place a sprout point ,  if distanceSpacing  point position× parameter factor

Illustration 5.2: Formal definition of free distribution

- 58 -



Opposite distribution is quite similar to free distribution. In this method, when 

a sprout point is found, two sub leaves are placed; one for top section and another for 

the  bottom.  This  method  uses  one  loop  to  handle  both  sections.  Synchronized 

handling mechanism results top and bottom leaves to sprout from the same point and 

become opposite of each other.

Similar to previous distribution mechanism, alternate distribution also places 

sub leaves to top and bottom sides of the main curve. Placing sub leaves alternately 

to top and bottom is its prime difference from opposite distribution. This method 

places a sub leaf at half of the distance calculated from spacing parameter since it 

places only one sub leaf per sprout point.

Circular distribution method is quite different from other methods. Instead of 

distributing sub leaves along the main curve, it places every sub leaf at the end of the 

vein  giving  different  sprout  angles  for  each.  This  method creates  fan like shape. 

Moreover, it does not use angle parameter at all. Firstly, factor to transform spacing 

value to angle is calculated. After this, every angle starting from -180° to 180° is 

checked. If the angle difference between current angle and previously generated sub 

leaf is more than angle distance calculated from spacing parameter, a new sub leaf is 

placed. All other parameters are calculated similarly; distance is replaced by angle. 

When the build function of the sub leaf level is called its given the tip of the vein as 

the sprout point, location is determined from the angle (-180° will become 0 while 

180° will be 1), the angle is directly taken from loop. Mirror parameter is set when 

the angle is below 0°. 

- 59 -



Top and bottom distribution methods only places sub leaves to one side. Similar 

to alternate distribution they work at half spacing.

5.6. Rendering Leaf

Our  application  supports  internal  rendering.  Although,  this  rendered  cannot 

provide very high quality results, it helps to see the leaf while adjusting parameter. 

Our renderer supports anti-aliasing and sub pixel accuracy; therefore, the result is not 

far from high quality vector rendering applications. In addition to filled rendering, 

our application displays blade and vein outlines, allowing user to see parts of the leaf 

clearly.

As it is discussed before, a generated leaf contains Bézier paths that are ready to 

draw. To draw outlines of these paths, Draw function of Bezier class is used. This 

function build a point list and uses line drawing algorithm to draw outline. However, 

rendering a leaf is more complicated than this. It requires closed Bézier paths which 

will be filled. This task is accomplished by building point list of Bézier paths, and 

passing this list to draw polygon function.

DrawPolygon function takes an array of points and color information to fill the 

given polygon.  This  function uses enhanced scan line algorithm to fill  the given 

curves. This scan line algorithm uses anti-aliasing method similar to Wu's algorithm. 

Moreover, its speed is enhanced by sorting mechanism which allows straight forward 

looking of line crossing to improve efficiency. In this scan line operation, every row 

of the image falling within the bounding box of the polygon is taken. For every row, 

draw flag is reset and all pixels of that row is checked. If that pixel contains a line 

- 60 -



boundary, draw flag is toggled. If draw flag is set for any pixel, requested color is 

given  to  that  pixel.  Line  boundaries  are  treated  slightly  different.  In  case  of  a 

boundary,  algorithm checks how much of that pixel falls  within the polygon and 

paints the given color with that intensity. This allows anti-aliased, smooth edges.

5.7. User Interface

On of the most important aspect of a design application is its user interface. 

Generally, design applications offer many tools that is aimed to assist the user. These 

tools are often packed together, so the user can access them faster, forming complex 

interfaces. Therefore, it is a trade-off between use speed and simplicity. 

In our application, we have used streamlined and simple interface to reduce the 

learning curve. Firstly we have a menu bar where generic commands exists.  There 

are three panels, first one is leaf level control. In this panel leaf levels that exist in 

this leaf definition is listed. In addition, more leaf levels can be added or removed 

from here. Second panel contains parameters. We have used a tabbed interface to 

group parameters. Moreover, parameters are sorted by their importance, therefore, 

the parameters that the user will change most will be at the top. Last panel shows 

results. A sample screen showing user interface is displayed in Figure 5.2.

- 61 -



Figure 5.2: Main interface and shape parameters

In our application UI class is the sole accessor to the user interface. The rest of 

the application is unaware of the user interface. This allows us to create derivative 

application such as a console based batch processor.

5.7.1. Main Interface

Menu bar, leaf level list and results panels can be defined as main interface. 

Results  panel  is  invisible when application is  opened,  it  is  shown when the user 

request to see the leaf. Moreover, file, message and rename dialogs are considered to 

be in this category. They are simple dialog frames that have widgets on them. To 

make  the  coding  easier,  we  have  implemented  functions  to  show  these  dialogs 

whenever they are needed.

- 62 -



Menu bar button events are handled by  UI class. However, only task of user 

interface system is to call a function to perform the requested task. Some tasks are 

outside the scope of leaf generation. Such operations are performed by Application 

class.  Application class handles application termination, creating a new leaf (uses 

template save file), and loading a leaf. Its also responsible from keeping current leaf 

class.

5.7.2. Leaf Parameters

Leaf parameters are shown and allowed to be edited on the parameters panel. 

This  panel  is  hidden when the application starts  and shown when a leaf  level  is 

selected. When a leaf level is selected SetSelected function is called which adjusts 

all controls to show parameter values of the given sub leaf. Since some parameters 

are  defined  as  curves,  Bezier classes  of  these  parameters  are  given  to  Bézier 

controls to be shown and edited. Bézier editors automatically modify curves without 

need  of  events.  However,  other  controls  fire  change  event  to  notify its  value  is 

changed. These events are handled by  UI class and selected leaf level is modified 

accordingly.

5.7.3. Bézier Control and Editor

Solely for the purpose of editing parameters in this project, we have created a 

new widget, Bézier control. This widget is derived from button and uses its image 

property to show current Bézier shape.  This is possible by using size attribute of 

Bezier class which modifies.  When the button is clicked Bézier editor is  shown 

which is displayed in Figure 5.3. 

- 63 -



Figure 5.3: Beziér Editor

Bézier editor uses interactive Bézier system to allow user to edit the given path. 

Interactive Bézier class extends normal  Bezier class and adds edit  support using 

mouse events. Interactive Bézier class basically handles mouse events within a given 

canvas and modify Bézier path that it extends. Although it could be done, there is no 

keyboard editing support in this system. Interactive Bézier system changes mouse 

pointer when it  is over an endpoint or control point.  It also allows user to select 

Bézier point and move them. Moreover, entire curve can be scaled or moved. This 

system also supports restrictive movement for Bézier value parameters which should 

have exactly one y-value for each x-axis. 

Figure 5.4: Keyboard shortcuts for curve templates

- 64 -



On top of interactive Bézier system, editor adds keyboard support, templates, 

save, and flip controls. Keyboard events are provided by frame widget. Keyboard 

event handler has two purposes, first one is to detect arrow keys. Arrow keys modify 

selected node by changing its position or positions of its control points. This effect is 

controlled by modifier keys (shift, control, alt). If no modifier key is pressed along 

with the arrow keys, node and its control points are modified.  Pressing shift  will 

modify previous, control will modify following control point. Alt modifier allows 

user to move only the node itself. Second responsibility of keyboard handler is to 

allow a template to be chosen by the user. Keys “1” through “8” can be used for this 

purpose.  Figure  5.4 shows  usable  templates.  Buttons  are  not  used  for  templates 

because there is space constraint on the dialog frame. Flip button mirrors entire path 

vertically.  Clicking  on  the  save  button  save  the  current  Bézier  path  to 

parameter.svg file. Using this system allows us to demonstrate usage of parameters 

easily. To save the SVG file, the target file is opened, SVG header is saved, export 

function of Bézier path is called and file is closed. The architecture of this system 

makes this  task trivial.  Last  button  is  close which  closes  the  editor  frame.  After 

closing the dialog, close event is fired. This is used by Bézier control to update the 

image on the button.

5.8. Save/Load and Export

This  project  supports  save/load  and export  functions.  Save/load functionality 

allows  us  to  save  leaves  for  later  usage  while  export  function  allows  usage  of 

generated leaf images in other applications. This system is designed to be extensible. 

Therefore, the save method should also be easily extended. We have defined an XML 

- 65 -



format  for  the  generated  leaves.  XML save  files  can  easily  be  modified  while 

preserving backward and forward compatibility. XML Schema of a leaf file is shown 

in Appendix A.

5.8.1. XML Format

Leaf XML has a root tag of  leaf.  Within the root tag,  parent tag of  stems 

contains all vein levels (using stem tag) including the root level. For every stem tag, 

id and sub-vein list, and parameters are saved. Sub-veins are saved by their vein-id, 

so it is possible to save recursive vein-levels with this method. In the leaf XML, all 

parameters are saved by their names. This method is used so that if another transition 

function is implemented, it can used without changing the structure of the XML file. 

Enumerated values are saved with their corresponding integer values. Since Bézier 

parameters are complex objects, we have created a method to save these curves. 

A Bézier curve is represented by  type="bezier" attribute.  Bezier tags also 

have  segments attribute, which denotes the number of segments exists within this 

curve. The  firstpoint tag is the first tag and represents start point of the curve. 

After this tag segments are saved with  segment tags. Each segment tag has three 

points, control point 1 (denoted by controlpoint id="1"), control point 2 (denoted 

by  controlpoint  id="2"),  and  end  point  (denoted  by  endpoint tag).  Points 

contain x, y, randx, randy (used for randomization) attributes along with a possible 

id attribute.

- 66 -



5.8.2. Save

This  system saves  XML data  by propagating  save  request  to  all  leaf  levels. 

These levels save their data by either directly creating XML code or asking a Bézier 

path  to  save  itself.  Bézier  path  also  calls  XML save  method  of  its  points.  This 

propagation method allows us to change the system easily. For instance, when Bézier 

randomization  is  implemented,  save method of  points  is  changed to  fit  this  new 

property.  Without  further  modification,  system  was  able  to  save  and  load 

randomization information that is present on points. 

Save  function  resides  in  LeafBlueprint class  (see  Section  5.4).  This  class 

opens  the  target  file  and  creates  XML  header  including  XSD  (XML  Schema 

Definition) target. After this preparation, every leaf level is given chance to create 

their  save  strings.  Simple  variables  are  saved  by  the  class  itself  while  Bézier 

parameters are saved by bezier as mentioned before (see section 4.3.13). After each 

level builds its XML save string, this code is saved to the file and its closed by leaf 

blueprint.

5.8.3. Load

Our application uses “XMLParser” library by Frank Vanden Berghen to read 

XML data. This XML parser library is designed to be used in C++ applications and 

follows object oriented programming methods.

When a load request is made, the requested file is sent to parser which returns 

the root element. The root element contains leaf levels. These leaf levels are sent to 

newly created leaf levels to be loaded. When a leaf level receives an XML node to be 

loaded, it checks every parameter for existence, inexistent parameters are left with 

- 67 -



their  default  values.  If  a  parameter  is  a  simple  type,  it  is  read  and put  into  the 

corresponding variable immediately. However, Bézier parameters are sent to Bézier 

load function where it is loaded. This method is similar to save and allows us to 

change the system a lot easier.

Although XML schema definition for leaf XML specifies that all parameters are 

required, default values for missing parameters are used and no error is generated to 

preserve back compatibility. This allows future version of the program to be able to 

use save files from previous versions without causing problems.

5.8.4. SVG Export

One of the most important aims of this project is to be useful. Usefulness cannot 

be  achieved without  being  able  to  transform the  output  of  your  application  to  a 

common  format.  To  address  this,  we  have  built  SVG  export  support  into  our 

application. SVG is defined in section 1.4.2.

SVG called is made to the generated leaf. As defined in Section 5.4 Leaf class is 

responsible for post generation operations. When an export call is made, the given 

file  is  opened  and  a  plain  SVG header  is  written  to  it.  Then  the  export  call  is 

propagated to the midrib, the first sub leaf.  Every sub leaf saves its blade and vein 

paths as SVG path node. Path node contains fill,  stroke attributes as well as path 

data.  This  data  is  represented  as  commands  and  points  as  parameters  to  these 

commands. Commands are separated by spaces. This structure is detailed below. [24]

• M (move) command moves the start of the path to the given coordinate, it 

takes a point as parameter, its used as Mx,y

- 68 -



• C (curve to) command creates a curve segment. It requires three points. It is a 

Bézier curve segment and actually requires four control points. The actual 

first point is taken from the last point of the path. Its usage is Cx1,y1 x2,y2 

x3,y3.

After a sub leaf writes its blade and vein data, it asks its sub leaves to write their  

blade and vein paths. When every sub leaf is written to file, Leaf class writes the end 

marker and closes the file. 

- 69 -



Chapter 6 – Conclusion and Results

6.1. Conclusion

In this  study we have determined set  of parameters and an algorithm that is 

based on Bézier curves to reconstruct a leaf. The parameters can define almost any 

leaf.  It  is  possible  to  represent  simple,  compound  and  lobed  leaves  as  well  as 

different leaf margins and venation patterns. Using Bézier curves, it is possible to 

create any leaf shape. Irregularities in the leaf shapes are achieved by using Bézier 

randomization  method.  Margins  can  be specified  separately then  repeated  by the 

system. This leads  to  an easier  usage.  This system only lacks reticulate  venation 

pattern which is added to future works category.

We have implemented our model with an application. This application can be 

used by graphic designers to supply them with leaf images whenever they require. 

They can either use an existing leaf definition or design it the way they want. Our 

application allows its user to edit leaf parameters and see the results in the same 

window. Since leaf images created almost instantly, designing leaves become an easy 

task. Using randomization, they can create many leaves of the same type to enrich 

their projects. 

6.2. Advantages

The application created as the result of this study allows graphic designers and 

botanists to design images with ease. After designing process these leaf definitions 

can be used to create any number of leaf images. In addition, these definitions can 

- 70 -



form a library where anyone can access leaf definitions of the plant they require. 

Randomization also allows different leaf images to be generated from the same set of 

parameters. This helps us to create more believable scenes. Consider a tree that is 

added to a garden scene, having different leaves makes the tree more realistic. 

Apart from 3D design, our application can generate leaves that can be used in 

printed media or web graphics. For instance, many different leaves can be stacked to 

create a background image. A company may choose a leaf as their logo, ability to 

export  vector graphics allow these images to be free of transformation problems. 

This ability also benefits printed media where the quality and design size can vary 

from few centimeters to meters.

6.3. Results and Discussions

In  this  section  we  have  demonstrated  results  of  our  study.  Since  our  study 

focuses on visual aspects of leaves, we have displayed these results visually. We have 

created several leaves and displayed their  advantages and applications in the real 

world projects.

Apart  from ease  of  use,  best  advantage  of  our  system is  producing  vector 

images. As it has been discussed (see Section  1.4.2), vector images maintain their 

quality when transformed. In Figure 6.1 a photo of a leaf is compared to vector leaf 

that is created with our application. In this comparison, raster (bitmap) image looses 

its quality when enlarged while quality of vector version is constant. Moreover, a 

vector image can easily be edited. If desired, colors can be changed or the shape can 

be modified.

- 71 -



Figure 6.1: Comparison of raster (top) and vector (bottom) images of a leaf at different  

zoom levels. Raster image is a photograph, while vector version is created by our  

application

In  Figure  6.2,  a  generated  leaf  is  used  as  an  icon.  Highlight,  gradient  and 

shadow is added to create more appealing image. This image is still in SVG form and 

various sized icons can be exported using it. This is eastern redbud tree leaf, its shape 

is cordate with entire margin and it has palmate veins.

Figure 6.2: A generated leaf used as an icon.

A complex leaf is shown in  Figure 6.3. This image is taken from a medicinal 

plant  called  Cannabis.  Its  extract  is  used  prescription  based  medicine  to  cure 

glaucoma, vomiting and pain. However, this plant is also used to make drugs called 

marijuana. Therefore, its production is regulated in many countries. Because of this, 

- 72 -



photographs of this plant cannot easily be taken. We are bound to images that can be 

found on the Internet. However, using our system, leaf definition of this plant can be 

made  public  and  any  required  images  can  be  produced  over  this  template.  To 

illustrate this purpose we have designed this leaf in our application and generated 

two leaves from this definition. In  Figure 6.4, outline version of the leaf is shown. 

Both of the generated leaves are displayed in Figure 6.5, smaller version is used for 

outline version.  Two leaves seem identical,  however,  they have small  differences 

between them. A careful examination will reveal differences.

Figure 6.3: A cannabis leaf

We have used cannabis leaf in several graphic design projects to demonstrate 

how they can be used in these kind of projects. First one is a concept design for a 

company called Cannabis Institute Labs and shown in Figure 6.6. For this project a 

logo (both colored and black and white) and a letterhead paper is designed.

- 73 -

Figure 6.4: Cannabis leaf outline



Figure 6.5: Cannabis leaves generated by our application

Figure 6.6: Concept design for Cannabis Institute Labs

Second project is to embed our leaves into an existing image. In this case we 

have created a burnt wood effect which can be observed in Figure 6.7.

- 74 -



Figure 6.7: Leaves are embedded in photograph

Our third project featuring same set of leaves is a compilation project shown in 

Figure 6.9. In this project we have placed outline versions of our leaves on an old 

looking book page. Leaves are colored in blue and dissolve effect is used on them. 

Moreover, we have added text to complete the project. We have used GIMP for this 

project. The result of this project is displayed in Figure 6.9.

- 75 -

Figure 6.8: An artificial scene featuring a wall and an ivy plant



Figure 6.9: Libram of leaves, our leaves are place on an old book image

We have also added more generated leaves displayed in Figure 6.10. In Figure

6.8, Figure 6.11 and Figure 6.12 more 3D scenes are shown.

- 76 -



Figure 6.10: Leaf images generated by our application

- 77 -



Figure 6.11: A 3D scene using two leaves that are generated by our system, plants are  

designed in XFrog

Figure 6.12: A 3D scene using a leaf texture generated by our application, vine is created  

using Ivy Generator

6.4. Future Works

There are still features that we have decided to design and implement. Since a 

project is never truly finished, more parameters, methods, and algorithms are planned 

to be added. The following list is the summary of the features that are planned as our 

future works.

- 78 -



• Color and texture mapping will provide more ways to customize the look of 

the generated leaf

• Different  methods  for  vein  placement  will  be  searched  and  added  as 

necessary

• Aging of the leaf will be added to cover all the necessary leaf textures to 

create a complete tree

• Decaying of leaf because of age and possible diseases

• Better rendering method will be devised

• Implementation of bump and/or displacement map generation for 3D usage

• A wrapper to create completely randomized leaves where the parameters are 

defined by the application

• A wrapper that will allow user to specify leaf parameters through specifying 

biological data (e.g. the amount of the water that the plant consumes)

• Smoothing leaf blade using Bézier union and smooth operations

- 79 -



References

[1]: Przemyslaw Prusinkiewicz, Lars Mündermann, Radoslaw Karwowski, Brendan 
Lane, The use of positional information in the modeling of plants, SIGGRAPH 
'01:  Proceedings  of  the  28th  annual  conference  on  Computer  graphics  and 
interactive techniques, 2001

[2]:  Bernd Lintermann and Oliver Deussen, Interactive Modeling of Plants, IEEE 
Comput. Graph. Appl., 1999

[3]:  Katsuhiko  Onishi  and  Shoichi  Hasuike  and  Yoshifumi  Kitamura  and  Fumio 
Kishino,  Interactive modeling of  trees  by using growth simulation,  VRST '03: 
Proceedings of the ACM symposium on Virtual reality software and technology, 
2003

[4]:  Aristid  Lindenmeyer,  Mathematical  models  for  cellular  interaction  in 
development, J. Theoret. Biology, 1968

[5]: XAO Yu-kun, LI Yun-feng, ZHU Qing-sheng, LIU Yin-bin, Modeling Leaves 
Based on Real Image, Journal of Shangai University, 2004

[6]:  Adam  Runions,  Martin  Fuhrer,  Brendan  Lane,  Pavol  Federl,  Anne-Gaëlle 
Rolland-Lagan,  Przemyslaw Prusinkiewicz,  Modeling  and visualization  of  leaf 
venation patterns, SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, 2005

[7]: Shenglian Lu and Chunjiang Zhao and Xinyu Guo and Changfeng Li, Modeling 
Curled Leaves, ICIG '07: Proceedings of the Fourth International Conference on 
Image and Graphics, 2007

[8]: Mark S. Hammel and Przemyslaw Prusinkiewicz and Brian Wyvill, Modelling 
compound leaves using implicit contours, CG International '92: Proceedings of 
the 10th International Conference of the Computer Graphics Society on Visual 
computing: integrating computer graphics with computer vision, 1992

[9]: , XFrog Web Site, , http://www.xfrog.com/

[10]:  Various  authors,  Vector  graphics,  2009, 
http://en.wikipedia.org/wiki/Vector_graphics

- 80 -



[11]: Chris Lilley, About SVG, 2004, http://www.w3.org/Graphics/SVG/About

[12]: Jackie Neider, Tom Davis, and Mason Woo , OpenGL Redbook, 1993

[13]: Richard S. Wright, Benjamin Lipchak, Nicholas Haemel, OpenGL SuperBible, 
2004

[14]:  Greg  Roelofs,  Introductiohn  to  PNG  Features,  2009, 
http://www.libpng.org/pub/png/pngintro.html

[15]:  David  Beattie,  John  White,  Leaf  Identification,  1999, 
http://cas.psu.edu/docs/CASDEPT/Hort/LeafID/Default.html

[16]:  Debivort,  Leaf  morphology,  2006 
(http://commons.wikimedia.org/wiki/File:Leaf_morphology_no_title.png)

[17]: Christopher Brickell, The Royal Horticultural Society, 1996

[18]: Various authors, Bézier Curve, 2009, http://en.wikipedia.org/wiki/Bézier_curve

[19]: Andés Iglesias, Bezier Curves and Surfaces, 2001

[20]: R. Winkel, Generalized Bernstein Polynomials and Beizer Curves, 2001

[21]: Dr Thomas Sederberg, BYU Bézier curves, 2003

[22]: M. S. Floater, Derivatives of Rational Bezier Curves, 1991

[23]:  Maxim  Shemanarev,  Adaptive  Subdivision  of  Bezier  Curves,  2005, 
http://www.antigrain.com/research/ adaptive_bezier

[24]: David Eisenberg, SVG Essentials, 2002

- 81 -



Appendix A. XML Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="leaf" targetNamespace="http://darkgaze.org/leaf.xsd" 
elementFormDefault="qualified" xmlns="http://darkgaze.org/leaf.xsd" 
xmlns:mstns="http://tempuri.org/leaf.xsd" 
xmlns:xs="http://www.w3.org/2001/XMLSchema" 
xmlns:NS="http://darkgaze.org/leaf.xsd">
  <xs:complexType name="point">
    <xs:attribute name="x" type="xs:decimal" />
    <xs:attribute name="y" type="xs:decimal" />
    <xs:attribute name="randx" type="xs:decimal" />
    <xs:attribute name="randy" type="xs:decimal" />
  </xs:complexType>
  <xs:complexType name="controlpoint">
    <xs:attribute name="id" type="xs:positiveInteger" />
    <xs:attribute name="x" type="xs:decimal" />
    <xs:attribute name="y" type="xs:decimal" />
    <xs:attribute name="randx" type="xs:decimal" />
    <xs:attribute name="randy" type="xs:decimal" />
  </xs:complexType>
  <xs:complexType name="limitbreakrandomize">
    <xs:attribute name="rla" type="xs:decimal" />
    <xs:attribute name="rlbc" type="xs:decimal" />
    <xs:attribute name="rlbl" type="xs:decimal" />
    <xs:attribute name="rlbh" type="xs:decimal" />
  </xs:complexType>
  <xs:complexType name="bezier">
    <xs:sequence>
      <xs:element name="firstpoint" type="point" />
      <xs:element name="segment">
        <xs:complexType>
          <xs:sequence>
            <xs:element name="controlpoint" minOccurs="2" maxOccurs="2" 
type="controlpoint" />
            <xs:element name="endpoint" type="point" />
          </xs:sequence>
        </xs:complexType>
      </xs:element>
    </xs:sequence>
    <xs:attribute name="type" type="xs:string" fixed="bezier" />
    <xs:attribute name="segments" type="xs:positiveInteger" />
  </xs:complexType>
  <xs:element name="leaf">
    <xs:complexType>
      <xs:sequence>
        <xs:element name="stems">
          <xs:complexType>
            <xs:sequence>
              <xs:element name="stem" maxOccurs="unbounded">
                <xs:complexType>
                  <xs:sequence>
                    <xs:element name="curvature" type="bezier" />
                    <xs:element name="power" type="bezier" />
                    <xs:element name="shape" type="bezier" />
                    <xs:element name="thickness" type="bezier" />
                    <xs:element name="stemspacing" type="bezier" />
                    <xs:element name="straighten" type="bezier" />
                    <xs:element name="angle" type="bezier" />
                    <xs:element name="length_power" type="bezier" />
                    <xs:element name="margin" type="bezier" />
                    <xs:element name="marginstrength" type="bezier" />
                    <xs:element name="maxlength" type="xs:decimal" />
                    <xs:element name="veinlength" type="xs:decimal" />
                    <xs:element name="distribution" type="xs:positiveInteger" />
                    <xs:element name="hasblade" type="xs:boolean" />
                    <xs:element name="hasvein" type="xs:boolean" />

- 82 -



                    <xs:element name="relativespacing" type="xs:boolean" />
                    <xs:element name="hasmargin" type="xs:boolean" />
                    <xs:element name="marginsizeleafpower" type="xs:decimal" />
                    <xs:element name="marginsizerelation" 
type="xs:positiveInteger" />
                    <xs:element name="relativemarginrepeat" type="xs:boolean" />
                    <xs:element name="marginrepeat" type="xs:decimal" />
                    <xs:element name="tip" type="xs:boolean" />
                    <xs:element name="anglerandomize" 
type="limitbreakrandomize" />
                    <xs:element name="spacingrandomize" type="limitbreakrandomize" 
/>
                    <xs:element name="lengthrandomize" 
type="limitbreakrandomize" />
                    <xs:element name="marginrepeatrandomize" 
type="limitbreakrandomize" />
                    <xs:element name="levelstrengthrandomize" 
type="limitbreakrandomize" />
                    <xs:element name="substems">
                      <xs:complexType>
                        <xs:sequence>
                          <xs:element name="substem" maxOccurs="unbounded" 
type="xs:IDREF" />
                        </xs:sequence>
                      </xs:complexType>
                    </xs:element>
                  </xs:sequence>
                  <xs:attribute name="id" type="xs:ID" />
                </xs:complexType>
              </xs:element>
            </xs:sequence>
          </xs:complexType>
        </xs:element>
      </xs:sequence>
      <xs:attribute name="version" type="xs:string" />
    </xs:complexType>
    <xs:key name="key2">
      <xs:selector xpath=".//NS:stem" />
      <xs:field xpath="@id" />
    </xs:key>
    <xs:keyref name="stemsubstems" refer="key2">
      <xs:selector xpath=".//NS:substems" />
      <xs:field xpath="NS:substem" />
    </xs:keyref>
  </xs:element>
</xs:schema>

- 83 -



Appendix B. Sample SVG Document

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" 
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="20cm" height="16cm" viewBox="0 0 512 256" 
xmlns="http://www.w3.org/2000/svg" version="1.1">
<g id="rootblade">
 <path stroke="#000000" fill="#008020" stroke-width="0.00" d=" M2.57,249.50 
C25.34,249.42 48.10,248.35 70.81,246.68  C81.21,245.91 91.59,245.02 101.97,244.04 
C102.39,237.10 95.34,233.50 91.71,228.56  C78.62,214.27 77.42,192.72 81.60,174.67 
C84.12,167.96 87.58,161.57 91.86,155.82  C103.32,140.97 120.19,129.95 
138.59,126.04  C157.70,121.14 177.68,119.90 197.33,121.15  C218.99,122.54 
240.59,127.16 260.64,135.54  C289.43,147.22 309.60,171.93 328.89,195.17 
C339.30,206.45 354.00,211.94 366.22,220.86  C366.22,220.86 366.22,221.86 
366.22,221.86  C354.28,230.58 340.10,236.90 331.12,249.08  C315.10,273.12 
301.28,299.89 277.20,317.07  C260.77,328.93 242.21,337.84 222.87,343.81 
C204.00,349.65 184.20,352.92 164.42,352.56  C144.44,352.94 124.14,346.07 
108.51,333.60  C102.81,328.86 97.81,323.24 93.83,316.99  C86.03,300.06 
84.13,278.35 94.72,262.14  C97.47,256.65 103.80,251.80 102.06,245.04 
C91.68,246.02 81.29,246.91 70.89,247.68  C48.15,249.35 25.37,250.42 2.57,250.50  " 
/> 
</g>
<g id="rootvein">
 <path stroke="#000000" fill="#804010" stroke-width="0.00" d=" M0.37,248.20 
C23.35,248.19 46.33,247.17 69.25,245.55  C92.26,243.92 115.23,241.68 138.16,239.23 
C160.89,236.81 183.60,234.17 206.32,231.69  C252.03,226.70 297.90,222.33 
343.91,221.65  C297.96,223.40 252.22,228.57 206.60,234.11  C183.90,236.87 
161.22,239.73 138.51,242.33  C115.55,244.95 92.55,247.32 69.51,249.03 
C46.50,250.73 23.44,251.79 0.37,251.80  " /> 
 <path stroke="#000000" fill="#804010" stroke-width="0.00" d=" M117.10,243.35 
C115.96,244.09 114.83,244.84 113.72,245.60  C112.60,246.36 111.50,247.14 
110.41,247.93  C109.20,248.82 107.99,249.71 106.81,250.62  C104.67,252.26 
102.59,253.98 100.54,255.73  C102.53,253.91 104.60,252.18 106.71,250.50 
C107.89,249.57 109.07,248.65 110.28,247.76  C111.37,246.96 112.47,246.18 
113.59,245.41  C114.71,244.64 115.84,243.89 116.98,243.17  " /> 
 <path stroke="#000000" fill="#804010" stroke-width="0.00" d=" M117.36,243.55 
C115.06,246.25 112.87,249.05 110.78,251.91  C108.76,254.68 106.85,257.51 
105.01,260.39  C103.09,263.43 101.26,266.53 99.53,269.69  C96.15,275.85 
93.13,282.20 90.41,288.69  C92.94,282.12 95.84,275.69 99.14,269.48  C100.84,266.29 
102.63,263.15 104.53,260.09  C106.34,257.17 108.26,254.32 110.27,251.55 
C112.37,248.66 114.58,245.86 116.91,243.16  " /> 
 <path stroke="#000000" fill="#804010" stroke-width="0.00" d=" M100.53,267.51 
C100.31,267.87 100.09,268.24 99.87,268.61  C99.60,269.07 99.33,269.53 99.06,269.99 
C98.78,270.46 98.52,270.93 98.25,271.39  C97.76,272.24 97.29,273.09 96.80,273.93 
C97.26,273.07 97.74,272.22 98.22,271.37  C98.48,270.90 98.75,270.44 99.01,269.97 
C99.27,269.50 99.53,269.03 99.80,268.57  C100.01,268.20 100.23,267.82 
100.44,267.45  " /> 
 <path stroke="#000000" fill="#804010" stroke-width="0.00" d=" M117.68,243.60 
C115.61,248.42 113.82,253.35 112.25,258.35  C110.70,263.31 109.38,268.34 
108.26,273.42  C107.13,278.56 106.20,283.74 105.44,288.95  C104.68,294.15 
104.09,299.38 103.64,304.61  C103.19,309.83 102.87,315.05 102.67,320.28 
C102.68,315.04 102.87,309.81 103.22,304.58  C103.57,299.33 104.07,294.08 
104.75,288.85  C105.43,283.62 106.30,278.40 107.39,273.23  C108.47,268.12 
109.76,263.05 111.32,258.05  C112.88,253.02 114.70,248.06 116.82,243.23  " /> 
 <path stroke="#000000" fill="#804010" stroke-width="0.00" d=" M107.87,274.65 
C106.56,277.73 105.32,280.84 104.13,283.96  C102.93,287.08 101.80,290.22 
100.72,293.37  C99.63,296.54 98.59,299.74 97.61,302.94  C95.63,309.36 93.86,315.83 
92.16,322.33  C93.69,315.79 95.44,309.30 97.35,302.87  C98.31,299.65 99.32,296.44 
100.36,293.25  C101.41,290.08 102.50,286.92 103.63,283.78  C104.76,280.62 
105.95,277.49 107.17,274.37  " /> 
  <path stroke="#000000" fill="#804010" stroke-width="0.00" d=" M116.83,242.89 
C114.15,239.02 111.68,235.00 109.41,230.87  C107.12,226.69 105.04,222.40 
103.14,218.03  C101.28,213.73 99.59,209.36 98.06,204.92  C95.03,196.11 
92.61,187.09 90.66,177.98  C92.90,187.01 95.47,195.97 98.64,204.72  C100.22,209.11 
101.95,213.45 103.86,217.72  C105.78,222.05 107.88,226.30 110.17,230.45 
C112.43,234.55 114.87,238.55 117.51,242.42  " /> 

- 84 -



 <path stroke="#000000" fill="#804010" stroke-width="0.00" d=" M101.85,214.85 
C100.59,212.59 99.36,210.31 98.16,208.02  C96.98,205.78 95.82,203.53 94.69,201.27 
C93.52,198.95 92.39,196.61 91.27,194.26  C89.09,189.64 86.99,184.98 85.05,180.26 
C87.12,184.92 89.22,189.58 91.45,194.17  C92.58,196.51 93.75,198.83 94.94,201.14 
C96.10,203.39 97.29,205.62 98.51,207.83  C99.76,210.09 101.04,212.34 102.35,214.56 
" /> 
 <path stroke="#000000" fill="#804010" stroke-width="0.00" d=" M116.92,242.93 
C114.58,241.06 112.31,239.12 110.12,237.09  C107.92,235.07 105.79,232.97 
103.73,230.81  C101.67,228.64 99.68,226.40 97.75,224.11  C93.97,219.60 
90.45,214.87 87.16,209.99  C90.57,214.77 94.19,219.42 98.03,223.87  C99.98,226.13 
102.00,228.34 104.07,230.48  C106.14,232.62 108.27,234.70 110.46,236.71 
C112.66,238.73 114.91,240.67 117.23,242.54  " /> 
 <path stroke="#000000" fill="#804010" stroke-width="0.00" d=" M116.97,242.90 
C116.27,242.62 115.56,242.32 114.86,242.02  C114.03,241.66 113.19,241.29 
112.37,240.90  C111.54,240.52 110.72,240.13 109.90,239.73  C108.41,239.00 
106.94,238.24 105.47,237.45  C106.95,238.20 108.45,238.93 109.95,239.64 
C110.77,240.03 111.59,240.42 112.42,240.79  C113.25,241.16 114.08,241.53 
114.92,241.89  C115.62,242.19 116.32,242.49 117.02,242.78  " /> 
</g>
</svg>

- 85 -


	Chapter 1 –  Introduction
	1.1.  Problem Definition
	1.2.  Goals
	1.3.  Previous Works
	1.4.  Standards Used
	1.4.1.  XML
	1.4.2.  Vector Graphics and SVG
	1.4.3.  OpenGL 
	1.4.4.  PNG

	1.5.  List of Symbols and Abbreviations

	Chapter 2 –  Leaf Anatomy and Morphology
	2.1.  Terminology
	2.2.  Leaf Shapes
	2.3.  Leaflet Arrangements
	2.4.  Venation Patterns
	2.5.  Margin Types

	Chapter 3 –  Leaf Modeling
	3.1.  Hierarchy
	3.2.  Shape parameters
	3.3.  Margin Parameters
	3.4.  Placement Parameters
	3.5.  Randomization

	Chapter 4 –  Bézier Class and Operations
	4.1.  Introduction
	4.2.  Bézier Curves
	4.2.1.  Bézier Curves in Vector Graphics
	4.2.2.  Cubic Bézier Curve
	4.2.3.  Bézier Curves of Higher Degrees

	4.3.  Application
	4.3.1.  Terminology
	4.3.2.  Bezier Class Properties
	4.3.3.  Translate, Scale, Rotate and Mirror
	4.3.4.  Combine
	4.3.5.  Finding Y Value at Given X
	4.3.6.  Finding Segment and Period at Given Place
	4.3.7.  Determine Slope/Angle
	4.3.8.  Offset
	4.3.9.  Duplicate
	4.3.10.  Randomize
	4.3.11.  Segment Division
	4.3.12.  Reducing Y Difference
	4.3.13.  Save XML
	4.3.14.  Load XML
	4.3.15.  Draw


	Chapter 5 –  Implementation
	5.1.  Introduction
	5.2.  Gorgon Game Engine (GGE)
	5.3.  Gorgon Widgets
	5.4.  Leaf Data and Representation
	5.5.  Generating a Leaf
	5.5.1.  Build Function
	5.5.2.  BuildSubleaves

	5.6.  Rendering Leaf
	5.7.  User Interface
	5.7.1.  Main Interface
	5.7.2.  Leaf Parameters
	5.7.3.  Bézier Control and Editor

	5.8.  Save/Load and Export
	5.8.1.  XML Format
	5.8.2.  Save
	5.8.3.  Load
	5.8.4.  SVG Export


	Chapter 6 –  Conclusion and Results
	6.1.  Conclusion
	6.2.  Advantages
	6.3.  Results and Discussions
	6.4.  Future Works

	References
	Appendix A.  XML Schema
	Appendix B.  Sample SVG Document

